The stationary solutions to the two-dimensional Navier-Stokes equation for large fluxes |
A. A. Illarionov, L. V. Illarionova |
2015, issue 1, P. 61-69 |
Abstract |
We prove some results concerning with solvability of stationary homogeneous incompressible 2D Navier-Stokes equations with non-zero fluxes. |
Keywords: Navier-Stokes equations, Leray problem |
Download the article (PDF-file) |
References |
[1] J. Leray, “Etude de diverses ?equations, integrales non lineaire et de queques problemes que posent l’Hydrodynamique”, J. Math. Pures Appl., 35:12 (1933), 1–82. [2] O. A. Ladyzhenskaja, Matematicheskie voprosy dinamiki vjazkoj neszhimaemoj zhidkosti, Nauka, M., 1970. [3] V. I. Yudovich, “Eleven great problems of mathematical hydrodynamics”, Mosc. Math. J., 3:2 (2003), 711–737. [4] A. Takeshita, “A remark on Leray’s inequality”, Pacific J. Math., 157:1 (1993), 151–158. [5] A. A. Illarionov, “O vozmozhnosti obobshhenija lemmy Hopfa na sluchaj uravnenijNav'e–Stoksa s nenulevymi potokami”, Sib. matem. zhurn, 50:4 (2009), 831–835. [6] C. J. Amick, “Existence of solutions to the nonhomogeneous steady Navier – Stokes equations”, Indiana Univ. Math. J., 33:6 (1984), 817–830. [7] L. I. Sazonov, “O sushhestvovanii stacionarnogo simmetrichnogo reshenija dvumernoj zadachi o protekanii zhidkosti”, Matem. zametki, 54:6 (1993). [8] H. Fujita, “On the stationary solutions to Navier-Stokes equations in simmetric planedomains under general outflow conditions”, Proceeding of International Conference onNavier – Stokes equations, Theory and Numerical methods, 1997, Varenna, Italy. Pitman Research Notes in Math. 388, 16–30. [9] V. V. Pukhnachev, “Viscous flows in domains with a multiply connected boundary”, New directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhauser Verlag, Basel, 2010, 333–348. [10] M. V. Korobkov, K. Pileckas, R. Russo, “On the Flux Problem in the Theory of SteadyNavier – Stokes Equations with Nonhomogeneous Boundary Conditions”, Arch. Rational Mech. Anal., 207 (2013), 185–213. [11] H. Fujita, H. Morimoto, “A remark on the existence of steady Navier – Stokes flow with non-vanishing outflow conditions”, Gakuto International Series in Math. Science and Appl., Nonlinear Waves, 10 (1997), 53–61. [12] H. Morimoto, “Note on the boundary value problem for the Navier–Stokes equations in2–D domain with general outfllow condition (in Japanese)”, Memoirs of the Institute of Science and Technology, Meiji University, 35 (1997), 95–102. [13] H. Morimoto, “General outflow condition for Navier–Stokes system”, In “Recent Topics on Mathematical Theory of Viscous Incompressible fluid”, Lectures Notes in Num. Appl. Anal., 16 (1998), 209–224. [14] A. Russo, G. Starita, “On the existence of steady-state solutions to the Navier–Stokes system for large fluxes”, Ann. Scuola Norm. Sup. Pisa, 7 (2008), 171–180. [15] V. V. Ragulin, “K zadache o protekanii vjazkoj zhidkosti skvoz' ogranichennuju oblast' pri zadannom perepade davlenija ili napora”, Dinamika sploshnoj sredy., 1976, №27, 78–92. [16] C. B`egue, C. Conca, F. Murat, O. Pironneau, “A nouveau sur les ?equations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression”, C. R. Acad. Sc. Paris. S?erie I., 304:2 (1987), 23–28. [17] A.Ju. Chebotarev, “Subdifferencial'nye kraevye zadachi dlja stacionarnyh uravnenij Nav'e – Stoksa”, Differenc. uravnenija, 28:8 (1992), 1443–1450. [18] C. Conca, F. Murat, O. Pironneau, “The Stokes and Navier-Stokes equation with boundary conditions involving the pressure”, Japan J. Math., 20:2 (1994), 279–318. [19] A. A. Illarionov, A.Ju. Chebotarev, “O razreshimosti smeshannoj kraevoj zadachi dlja stacionarnyh uravnenij Nav'e – Stoksa”, Differenc. uravnenija, 37:5 (2001), 689–695. [20] A. A. Illarionov, “O razreshimosti kraevyh zadach dlja stacionarnyh uravnenij Nav'e – Stoksa”, Dal'nevostochnyj matem. zhurn., 2:1 (2001), 16–36. [21] A. A. Illarionov, “Sushhestvovanie stacionarnogo simmetrichnogo reshenija dvumernyh uravnenij Nav'e – Stoksa s zadannym naporom i nenulevymi potokami”, Differenc. uravnenija, 45:8 (2009), 116–1125. |