Stochastic First Integrals, Kernel Functions for Integral Invariants and the Kolmogorov equations |
V. A. Dubko, E. V. Karachanskaya |
2014, issue 2, P. 200–216 |
Abstract |
In this article the authors present stochastic first integrals (SFI), the generalized Ito-Wentzell formula and its application for obtaining the equations for SFI, for kernel functions for integral invariants and the Kolmogorov equations which described by the generalized Ito equations. |
Keywords: Stochastic first integrals, Stochastic kernel function, Stochastic integral invariant, the Ito? equation with Poisson measure, the Generalized Ito-Wentzell formula, Kolmogorov's equations |
Download the article (PDF-file) |
References |
[1] V. A. Dubko, Pervyj integral sistemy stoxasticheskix differencial'nyx uravnenij, preprint, In-t matematiki AN USSR, Kiev, 1978. [2] N. V. Krylov, B. L. Rozovskij, “Stoxasticheskie differencial'nye uravneniya v chastnyx proizvodnyx i diffuzionnye processy”, Uspexi mat. nauk, 37:6 (1982), 75–95. [3] V. A. Dubko, “Otkrytye e'volyucioniruyushhie sistemy.”, Persha mizhnarodna naukovo-praktichna konferenciya “Vidkriti evolyucionuyuchi sistemi” (26–27 kvit. 2002 r., Kiiv (Dodatok)), VNZ VMURoL, Kii?, 2002, 14–31. [4] V. A. Dubko, Voprosy teorii i primeneniya stoxasticheskix differencial'nyx uravnenij, DVNC AN SSSR, Vladivostok, 1989. [5] V. A. Dubko, “Otkrtytye dinamicheskie sistemy”, V poiskax skrytogo poryadka, Dal'nauka, Vladivostok, 1995, 94–116. [6] V. A. Dubko, “Integral'ni invarianti dlya odnogo klasu sistem stoxastichnix diferencial'nix rivnyan'”, Dokl. AN USSR, A:1 (1984), 18–21. [7] V. A. Dubko, “Integral'nye invarianty, pervye integraly i prityagivayushhie mnogoobraziya stoxasticheskix differencial'nyx uravnenij dlya odnogo klassa stoxasticheskix differencial'nyx uravnenij”, Cb. nauch. tr. NAN Ukrainy, In-t matematiki NAN Ukrainy, Kiev, 1998, 87–90. [8] V. A. Dubko, “Integral'nye invarianty uravnenij Ito i ix svyaz' s nekotorymi zadachami teorii sluchajnyx processov”, Dokl. NAN Ukrainy, 2002, № 1, 24–29. [9] E. Karachanskaya(Chalykh), “Dynamics of random chains of finite size with an infinite number of elements in ${\mathbb R}^{2}$”, Theory of Stochastic Processes, 16 (32):2 (2010), 58–68. [10] V. A. Dubko, E. V. Chalyx, Brounovskoe dvizhenie s determinirovannym modulem skorosti, Preprint, In-t mat. NAN Ukrainy, Kiev, 1997. [11] E. V. Chalyx, “Obobshhenie modelej brounovskogo dvizheniya so sluchajnymi ortogonal'nymi vozdejstviyami”, Druga mizhnarodna naukovo-praktichna konferenciya «Vidkriti evolyucionuyuchi sistemi» (1–30 grudnya 2003 r.), VNZ VMURoL, Kiev, 2003, 90–93. [12] V. A. Dubko, E. V. Chalyx, “Postroenie analiticheskogo resheniya dlya odnogo klassa uravnenij tipa Lanzhevena s ortogonal'nymi sluchajnymi vozdejstviyami”, Ukr. mat. zhurn., 50:4 (1998), 666–668. [13] E. V. Karachanskaya, V. A. Dubko, Primenenie xarakteristicheskix funkcij v teorii veroyatnostej i teorii sluchajnyx processov, uchebnoe posobie, Izd-vo Tixookean. gos. un-ta, Xabarovsk, 2010. [14] E. V. Karachanskaya, “Momentnye xarakteristiki i dinamika polozheniya diffundiruyushhej na sfere tochki pod dejstviem puassonovskix skachkov”, Vestnik Tixookeanskogo gosuniversiteta, 2012, № 1(24), 69–72. [15] E. V. Karachanskaya, “Ob odnom obobshhenii formuly Ito – Ventcelya”, Obozrenie prikladnoj i promyshlennoj matematiki, 18:2 (2011), 494–496. [16] V. A. Dubko, E. V. Karachanskaya, O dvux podxodax k postroeniyu obobshhennoj formuly Ito – Ventcelya, preprint №174, Izd-vo Tixookean. gos. un-ta, Xabarovsk, 2012. [17] E. V. Karachanskaya, “Obobshhennaya formula Ito – Ventcelya dlya sluchaya necentrirovannoj puassonovskoj mery, stoxasticheskij pervyj integral i pervyj integral”, Matematicheskie trudy, 17:1 (2014), 299–122. [18] E. V. Chalyx, “Programmnoe upravlenie s veroyatnost'yu 1 dlya otkrytyx sistem”, Obozrenie prikladnoj i promyshlennoj matematiki, 14:2 (2007), 253–254. [19] E. V. Chalyx, “Postroenie mnozhestva programmnyx upravlenij s veroyatnost'yu 1 dlya odnogo klassa stoxasticheskix sistem”, Avtomatika i telemexanika, 70:8 (2009), 110–122. [20] E. V. Karachanskaya, “Postroenie programmnyx upravlenij s veroyatnost'yu 1 dlya dinamicheskoj sistemy s puassonovskimi vozmushheniyami”, Vestnik Tixookeanskogo gosudarstvennogo universiteta, 2011, № 2 (21), 51–60. [21] A. D. Ventcel', “Ob uravneniyax teorii uslovnyx markovskix processov”, Teoriya veroyatnostej i ee? primenenie, X:2 (1965), 390–393. [22] V. A. Dubko, E. V. Karachanskaya, Special'nye razdely teorii stoxasticheskix differenci al'nyx uravnenij, ucheb. posobie, Izd-vo Tixookean. gos. un-ta, Xabarovsk, 2013. [23] I. I. Gixman, A. V. Skoroxod, Stoxasticheskie differencial'nye uravneniya, Nauk. dumka, Kiev, 1968. [24] B. \Oksendal and T. Zhang, “The Ito-Ventcel formula and forward stochastic differential equation driven by Poisson random measures”, Osaka J. Math., 44 (2007), 207–230. [25] B. \Oksendal and A. Sulem and T. Zhang, “A stochastic HJB equation for optimal control of forward-backward SDEs”, http://arxiv.org/abs/1312.1472v1. [26] V. A. Dubko, Stoxasticheskie differencial'nye uravneniya v nekotoryx zadachax matematicheskoj fiziki, Dissertaciya na soiskanie uch. stepeni kand. fiz.-mat. nauk; Institut matematiki AN USSR, Kiev, 1979. [27] V. I. Zubov, Dinamika upravlyaemyx sistem, Uchebnoe posobie dlya vuzov, Vysshaya shkola, M., 1982. |