Geometrical aspects of the mass conservation law |
A. I. Gudimenko, M. A. Guzev |
2014, issue 2, P. 173–190 |
Abstract |
The theory of fiber bundles is used for representation of the mass conservation law in a coordinate-free form. А generalized formulation of the law is proposed and its physical interpretations are discussed. |
Keywords: conservation laws, Lie derivative, bundles, covariant derivative |
Download the article (PDF-file) |
References |
[1] F. Klejn, Lekcii o razvitii matematiki v XIX stoletii, ONTI, M.–L., 1998. [2] A. Puankare, O nauke, Nauka, M., 1990. [3] L. I. Sedov, “Matematicheskie metody postroeniya novyx modelej sploshnyx sred”, UMN, 20:5(125) (1965), 121–180. [4] G. Romano, R. Barretta, M. Diaco, “Geometric continuum mechanics”, Meccanica, 49:1 (2014), 111–133. [5] S. K. Godunov, E. I. Romenskij, E'lementy mexaniki sploshnyx sred i zakony soxraneniya, Nauchnaya kniga, Novosibirsk, 1998. [6] L. I. Sedov, Mexanika sploshnoj sredy, T. 1, Nauka, M., 1994. [7] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989. [8] J. Ehlers, “The Nature and Structure of Space-Time”, The Physicist?s Conception of Nature, ed. J. Mehra, Raidel, Dordrecht, 1973, 71–91. [9] E. Cartan, “Sur les varietes a connexion affine et la theorie de la relativite generalisee (premiere partie)”, Ann E?cole Norm Sup., 40 (1923), 325–412. [10] E. Cartan, “Sur les varietes a connexion affine et la theorie de la relativite generalisee (suite)”, Ann E?cole Norm Sup., 41 (1924), 1–25. [11] A. Bernal, M. Sanchez, “Leibnizian, Galilean and Newtonian structures of space-time”, J. Math. Phys., 44 (2003), 77–108. [12] A. Trautman, “Foundations and current problems of general relativity”, Lectures on General Relativity. Volume 1 of Brandeis Summer Institute in Theoretical Physics, ed. S. Deser and K. Ford, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965, 1–248. [13] A. Trautman, “Fibre Bundles Associated with Space-Time”, Reports in Mathematical Physics, 1 (1970), 29–62. [14] A. Trautman, “A classification of space-time structures”, Reports in Mathematical Physics, 10 (1976), 297–310. [15] G. Giachetta, L. Mangiarotti and G. Sardanashvily, Geometric formulation of classical and quantum mechanics, World Scientific, Singapore, 2011. [16] S. P. Novikov, I. A. Tajmanov, Sovremennye geometricheskie struktury i polya, MCNMO, M., 2005. [17] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin, 1983. [18] A. Jadczyk, M. Modugno, Galilei general relativistic quantum mechanics, Report of Department of Applied Mathematics, University of Florence, 1994, http://www.dma.unifi.it/~modugno/. [19] W. Noll, “On the continuity of the solid and fluid states”, J. Rational Mech.Anal., 4 (1955), 3–81. [20] C. Truesdell, R. Toupin, “The classical field theories”, Encyclopedia of Physics, ed. S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960. [21] J. Koszull, Lectures on fibre bundles and differential geometry, Notes by S. Ramanan, Tata Institute of Fundamental Research, Bombay, 1960. [22] G. Giachetta, L. Mangiarotti and G. Sardanashvily, Advanced Classical Field Theory, World Scientific, Singapore, 2009. [23] I. Kolar, P. Michor, J. Slovak, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993. [24] B. Schutz, Geometrical methods of mathematical physics, Cambridge Univ. Press, Cambridge, 1980. [25] L. D. Landau, E. M. Lifshic, Teoreticheskaya fizika. T. VI. Gidrodinamika, Fizmatlit, M., 2001. |