On the distribution of integer points on the determinant surface |
V. A. Bykovskii |
2014, issue 2, P. 156–159 |
Abstract |
This paper offers a new method for ergodic properties studying of integer points on the determinant surface. This approach is based on the spectral theory of automorphic Laplacian. |
Keywords: distribution of integer points, spectral theory of automorphic functions |
Download the article (PDF-file) |
References |
[1] E. V. Podsypanin, “Raspredelenie celyx tochek na determinantnoj poverxnosti”, Zap. nauchn. seminar LOMI, 93 (1980), 30–40. [2] A. V. Ustinov, “O chisle reshenij sravneniya $xy \equiv l (mod q)$ pod grafikom dvazhdy nepreryvno differenciruemoj funkcii”, Algebra i analiz, 20:5 (2008), 186–216. [3] N. V. Kuznecov, “Sve?rtka koe'fficientov Fur'e ryadov E'jzenshtejna–Maassa”, Zap. nauchn. seminar LOMI, 129 (1983), 43–84. [4] V. Bykovskii, N. Kuznetsov, A. Vinogradov, “Generalized summation formula for inhomogeneous convolution”, Automorphic functions and their applications, Acad. Sci. USSR Inst. Appl. Math., Khabarovsk, 1990, 18–63. [5] Y. Motohashi, “The binary additive divisor problem”, Ann. Scient. E?cole Norm. Sup, 4e Se?r., 27 (1994), 529–572. |