Calculation of a Gauss sum via the discrete Fourier transform |
Ustinov A. V. |
2014, issue 1, P. 90-95 |
Abstract |
The explicit formula for a Gauss sum is proved using the discrete Fourier transform. The Gauss quadratic reciprocity law is established as a corollary. |
Keywords: Gauss sum, discrete Fourier transform, Gauss quadratic reciprocity law |
Download the article (PDF-file) |
References |
[1] N. V. Budarina, V. A. Bykovskii, “Arifmeticheskaia priroda tozhdestv dlia troinogo i piatikratnogo proizvedenii”, Dal'nevost. matem. zhurn., 11:2 (2011), 140–148. [2] P. G. L. Dirikhle, Lektsii po teorii chisel, ONTI MKTP, 1936. [3] G. Devenport, Mul'tiplikativnaia teoriia chisel, Nauka, Moskva, 1971. [4] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniia, Nauka, M., 1989. [5] N. M. Korobov, “Spetsial'nye polinomy i ikh prilozheniia Diofantovy priblizheniia”, Matem. Zapiski, 2 (1996), 77–89. [6] A. V. Ustinov, “Diskretnyi analog formuly summirovaniia Puassona”, Matem. zametki, 73:1 (2003), 106–112; Math. Notes, 73:1 (2003), 97{102. [7] A. V. Ustinov, “Elementarnyi podkhod k vychisleniiu $zeta(2n)$”, Chebyshevskii sbornik, 4 (2003), 106–110. |