Far Eastern Mathematical Journal

To content of the issue


On invariant form of the mass conservation law


Gudimenko A. I., Guzev M.A.

2014, issue 1, P. 33-40


Abstract
The theory of fiber bundles is used for representation of the mass conservation law in a form that is invariant under general transformations of the four space-time coordinates. А generalized formulation of the law is proposed on the base of transition to covariant differentiation. Some physical interpretations of the generalized formulation are discussed.

Keywords:
conservation laws, Lie derivative, bundles, covariant derivative

Download the article (PDF-file)

References

[1] S.K. Godunov, E.I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniia, Nauchnaia kniga, Novosibirsk, 1998.
[2] S.P. Novikov, I.A. Taimanov, Sovremennye geometricheskie struktury i polia, MTsNMO, M, 2005.
[3] M.M. Postnikov, Lektsii po geometrii. Semestr IV. Differentsial'naia geometriia. Ucheb. posobie dlia vuzov, Nauka. Gl. red. fiz.-mat. lit., M, 1988.
[4] I. Kol?ar, P. Michor, J. Slov?ak, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[5] R. Darling, Differential Forms and Connections, Cambridge University Press, 1994.
[6] R. Palais, The geometrization of physics, National Tsing Hua University, Hsinchu, Taiwan, 1981.
[7] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989.
[8] C. Truesdell, R. Toupin, The classical field theories. In Encyclopedia of Physics edited by S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960.
[9] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin, 1983.
[10] V.L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka. Gl. red. fiz.-mat. lit., M, 1983.

To content of the issue