The methods for solution semicoercive variational inequalities of mechanics on the basis of modified Lagrangian functionals |
Vikhtenko E. M., Woo G., Namm R. V. |
2014, issue 1, P. 6-17 |
Abstract |
The duality scheme based on a modified Lagrangian functional is considered for an elliptic semi-coercive variational Signorini’s inequality. The sustainable method for the solution of an investigated inequality is constructed and justified. |
Keywords: variational inequality, Signorini’s problem, sensitivity functional, Lagrangian functional, dual functional, saddle point, Uzawa method, proximal regularization |
Download the article (PDF-file) |
References |
[1] G. Fikera, Teoremy sushchestvovaniia v teorii uprugosti, Mir, M., 1974. [2] R. Glovinski, Zh.L. Lions, R. Tremol'er, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M, 1979. [3] G. Vu, R. V. Namm, S. A. Sachkov, “Iteratsionnyi metod poiska sedlovoi tochki dlia polukoertsitivnoi zadachi Sin'orini, osnovannyi na modifitsirovannom funktsionale Lagranzha, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36. [4] I. Glavachek, Ia. Gaslinger, I. Nechas, Ia. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986. [5] G. Diuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980. [6] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastiakh, Fizmatlit, M., 2010. [7] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, University Press, Cambridge, United Kingdom, 2000. [8] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979. [9] D.P. Bertsecas, Convex Optimization Theory, Athena Scientific, Massachusetts Institute of Technology, Massachusetts, USA, 2009. [10] E. M. Vikhtenko, G. Vu, R. V. Namm, “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1357–1366. [11] E. M. Vikhtenko, R. V. Namm, “Kharakteristicheskie svoistva modifitsirovannogo funktsionala Lagranzha dlia kontaktnoi zadachi teorii uprugosti s zadannym treniem”, Dal'nevost. matem. zhurn., 9:1–2 (2009), 38–47. [12] A. Kufner, S. Fuchik, Nelineinye differentsial'nye uravneniia, Nauka, M., 1988. [13] N. N. Kushniruk, R. V. Namm, “Metod mnozhitelei Lagranzha dlia resheniia polukoertsitivnoi model'noi zadachi s treniem”, Sibirskii zh. vychisl. matem., 12:4 (2009), 409–420. [14] L. V. Kantorovich, G. L. Akilov, Funktsional'nyi analiz, Nauka, M, 1984. [15] B.T. Poliak, Vvedenie v optimizatsiiu, Nauka, M, 1983. [16] R. V. Namm, A. G. Podgaev, “O W_2^2 -reguliarnosti reshenii polukoertsitivnykh variatsionnykh neravenstv”, Dal'nevostochnyi matem. zhurn., 3:2 (2002), 210–215. |