Far Eastern Mathematical Journal

To content of the issue


Solvability of a quasi-linear parabolic equation in the domain with a piecewise monotone boundary


Podgaev A. G., Lisenkov K. V.

2013, issue 2, P. 250-272


Abstract
We investigate the existence of regular solutions for the quasilinear parabolic equation in non-cylindrical domain with a boundary of class$W_2^1$. The equation can degenerate but point degenerates depend from solution. Approximate solutions are constructed using the projection method of the family of projectors depending on the time parameter. We prove that a limit of these solutions will be the solution of the problem. To justify the existence of the limit solution are used compactness methods functions from scale of Banach spaces.

Keywords:
existence, a quasi-linear parabolic equation, non-cylindrical domains, the projection method, the compactness, the scale of Banach spaces

Download the article (PDF-file)

References

[1] K. V. Lisenkov, “Proektsionyi metod resheniia zadachi dlia kvazilineinogo parabolicheskogo uravneniia v netsilindricheskoi oblasti s granitsei klassa $W_2^1$”, Dal'nevost. matem. zhurn., 12:1 (2012), 48–59.
[2] N. E. Istomina, A. G. Podgaev, “O razreshimosti zadachi dlia kvazilineinogo vyrozhdaiushchegosia parabolicheskogo uravneniia v oblasti s netsilindricheskoi granitsei”, Dal'nevost. matem. zhurn., 1:1 (2000), 63–73.
[3] I. G. Petrovskii, Composito mathematica, 1935.
[4] P. V. Vinogradova, A. G. Zarubin, “O metode Galerkina dlia kvazilineinykh parabolicheskikh uravnenii v netsilindricheskoi oblasti”, Dal'nevost. matem. zhurn., 3:1 (2002), 3–17.
[5] J. Ferreira, N. A. Lar'kin, “Global solvability of a mixed problem for a nonlinear hyperbolic-parabolic equation in noncylindrical domains", Portugaliae mathematica, 53:4 (1996), 381-395.
[6] A. I. Kozhanov, N. A. Lar'kin, “On solvability of boundary-value problems for the wave equation with a nonlinear dissipation in noncylindrical domains", Siberian Mathematical Journal, 42:6 (2001), 1062-1081.
[7] A. I. Kozhanov, N. A. Lar'kin, “O razreshimosti kraevykh zadach dlia sil'no nelineinykh uravnenii viazkouprugosti v netsilindrichekikh oblastiakh”, Matematicheskie zametki IaGU, 6:1 (1999), 36.
[8] S. N. Glazatov, “O nekotorykh zadachakh dlia dvazhdy nelineinykh parabolicheskikh uravnenii i uravnenii peremennogo tipa”, Siberian Adv. Math., 11:1 (2001), 45–83.
[9] R. G. Zainullin, “Ob odnom analiticheskom podkhode k resheniiu odnomernoi zadachi perenosa tepla so svobodnymi granitsami”, Izv. Vyssh. Ucheb. Zav. Matematika, 2 (2008), 24–31.
[10] E. A. Baderko, “O razreshimosti granichnykh zadach dlia parabolicheskikh uravnenii vysokogo poriadka v oblastiakh s krivolineinymi bokovymi granitsami”, Differentsial'nye uravneniia, 12:10 (1976), 1780–1792.
[11] Iu.T. Sil'chenko, “Odna kraevaia zadacha dlia oblasti s podvizhnoi granitsei”, Izv. Vyssh. Ucheb. Zav. Matematika, 3 (1998), 44–46.
[12] D. C. Antonopoulou, “Discontinuous Galerkin methods for the linear Schrodinger equation in non-cylindrical domains”, Numer.Math., 115:2 (2010), 585-608.
[13] P. Jamet, “Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain", SIAM J.Numer.Anal., 15:5 (1978), 912-928.
[14] N. A. Dragieva, “Primenenie metoda Galerkina k resheniiu volnovogo uravneniia v oblasti s podvizhnymi granitsami”, Zhurn. Vych. Mat. i Mat. Fiz., 15:4 (1975), 946–956.
[15] L. F. Voevodin, “Chislennoe modelirovanie rosta ledianogo pokrova v vodoeme”, Sib. zhurn. ind. matem., 9:1 (2006), 47–54.
[16] R. A. Mustafaev, “Reshenie obobshchennym metodom integral'nykh sootnoshenii odnoi nestatsionarnoi zadachi fil'tratsii s podvizhnoi granitsei”, Zhurn. Vych. Mat. i Mat. Fiz., 48:2 (2008), 282–287.
[17] A. G. Podgaev, “Ob otnositel'noi kompaktnosti mnozhestva abstraktnykh funktsii iz shkaly banakhovykh prostranstv”, Sib. matem. zhurn., 34:2 (1993), 135—145.
[18] Iu.A. Dubinskii, “Nelineinye ellipticheskie i parabolicheskie uravneniia”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 9 (1976), 1–130.
[19] Zh.L. Lions, Nekotorye metody resheniia nelineinykh kraevykh zadach, Mir, M., 1972, 587 s.
[20] O. A. Ladyzhenskaia, V. A. Solonnikov, N. N. Ural'tseva, Lineinye i kvazilineinye uravneniia parabolicheskogo tipa, Nauka, M., 1967, 736 s.

To content of the issue