On the K-divisibility constant in a pair of weighted $L_p$ spaces |
Dmitriev A. A. |
2013, issue 2, P. 192-195 |
Abstract |
An estimate $?_p\ge p^{1/p}q^{1/q}$ of the K-divisibility constant has been obtained for a pair of weighted Lp spaces. Taking into account an known estimate of the K-divisibility constant for an arbitrary pair of Banach lattices this implies that $2\le ?\le4$. |
Keywords: Banach couple, interpolation of linear operators, K-functional, K-method, constant K-divisibility |
Download the article (PDF-file) |
References |
[1] N. Ia. Krugliak, “O konstante K-delimosti pary (C;C1)”, Issled. po teorii funktsii mnogikh veshchestvennykh peremennykh, IaGU, Iaroslavl', 1981, 37–44. [2] T. S. Podogova, “Ob odnom svoistve modulia nepreryvnosti”, Issled. po teorii funktsii mnogikh veshchestvennykh peremennykh, IaGU, Iaroslavl', 1982, 84–89. [3] Yu. A. Brudnyi, N.Ya. Krugluak, Interpolation functors and interpolation spaces, North-Holland Math. Lab., 47, Elsevier Science Publ. B.V., Amsterdam, 1991. [4] I. Berg, I. Lefstrem, Interpoliatsionnye prostranstva. Vvedenie, Mir, M., 1980. [5] V. I. Ovchinnikov, The method of orbit in interpolation theory, Math. Rept, 1, Part 2, Harwood Acad. Publ, London, 1984. [6] V. I. Dmitriev, V. I. Ovchinnikov, “Ob interpoliatsii v prostranstvakh veshchestvennogo metoda”, DAN SSSR, 46:4 (1979), 794–797. [7] L. V. Kantorovich, G. P. Akilov, Funktsional'nyi analiz, Nauka, M., 1977. [8] Iu. Liuk, Spetsial'nye maiematicheskie funktsii i ikh aproksimaktsii, Mir, M., 1980. |