On the arithmetic nature of some identities of the elliptic functions theory |
Bykovskii V. A., Monina M. D. |
2013, issue 1, P. 15-34 |
Abstract |
The article offers a new arithmetic method of proof of the classical triple, quintuple and octuple product identities of the theta functions theory. |
Keywords: theta function, Liouville’s identity, infinite product |
Download the article (PDF-file) |
References |
[1] C. G. J. Jacobi, Gesammelte Werke, 1, Berlin, 1881. [2] L. E. Dickson, History of the Theory of Numbers, 2, Chelsea Pub. Co., New York, 1952. [3] J. V. Uspensky, M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company, Inc., New York and London, 1939. [4] B. A. Venkov, Elementarnaia teoriia chisel, ONTI NKTP SSSR, M. ; Leningrad, 1937. [5] Kenneth S. Williams, Number theory in the spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge University Press, 2011. [6] C. F. Gauss, Werke, II, Gottingen, 1863. [7] R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, 1, Springer, Berlin, 2011. [8] J. Ouspensky, “Sur les relations entre les nombres des classes des formes quadratiques binaires et positives. Premier Memoire, I”, Izvestiia Akademii Nauk. VI seriia, 19:12-15 (1925), 599–620. [9] N. V. Budarina, V. A. Bykovskii, “Arifmeticheskaia priroda tozhdesv dlia troinogo i piatikratnogo proizvedenii”, Dal'nevostochnyi matematicheskii zhurnal, 11:2 (2011), 140–148. [10] G. N. Watson, “Theorems stated by Ramanujan (VII): theorems on a continued fraction”, J. London Math. Soc., 4 (1929), 39-48. [11] A. O. L. Atkin, P. Swinnerton-Dyer, “Some properties of partitions”, Proc. London Math. Soc. (3), 4 (1954), 84-106. [12] B. Gordon, “Some identities in combinatorial analysis”, Quart. J. Math. Oxford Ser. (2), 12 (1961), 285-290. [13] A. A. Kliachko, “Moduliarnye formy i predstavleniia simmetricheskikh grupp”, Zap. nauchn. sem. LOMI, 116, 1982, 74–85. [14] H. M. Weber, Lehrbuch der Algebra, 3, Braunschweig, 1908. |