Far Eastern Mathematical Journal

To content of the issue


To the Formation of Residual Stress Field in the Vicinity of a Spherical Cavity Viscoelastoplastic Material


A. A. Burenin, L. V. Kovtanjuk, I. A. Terletskiy

2012, issue 2, P. 146–159


Abstract
Exact solution of a sequence of one-dimensional boundary value problems on the formation of a neighborhood of single spherical defect continuity viscoelastoplastic hydrostatic pressure, followed by unloading and heating are resulted. The level and distribution of residual stresses and the relaxation of the latter when heated are calculated. It is accepted, that properties of a material submit to linear viscoelastic Voigt model at a stage anticipating plastic flow, and at unloading, and the yield stress depends on temperature.

Keywords:
elasticity, viscosity, plasticity, residual stresses

Download the article (PDF-file)

References

[1] V. I. Astaf'ev, Iu. N. Radaev, L. V. Stepanova, Nelineinaia mekhanika razrusheniia, Samarskii universitet, Samara, 2001, 632 s.
[2] G. P. Anastasiadi, M. V. Sil'nikov, Neodnorodnost' i rabotosposobnost' stali, «Poligon», Sankt-Peterburg, 2002, 624 s.
[3] V. I. Gorelov, “Issledovanie vliianii vysokikh davlenii na mekhanicheskie kharakteristiki aliuminievykh splavov”, Prikl. mekhanika i tekhn. Fizika, 1984, № 5, 157–158.
[4] A. A. Burenin, L. V. Kovtaniuk, M. V. Polonik, “Vozmozhnost' povtornogo plasticheskogo techeniia pri obshchei razgruzke uprugoplasticheskoi sredy”, DAN, 375:6 (2000), 767–769.
[5] A. A. Burenin, L. V. Kovtaniuk, Uprugie effekty pri intensivnom neobratimom deformirovanii, Iz-vo DVGTU, Vladivostok, 2011, 280 s.
[6] A. A. Burenin, L. V. Kovtaniuk, E. V.Murashkin, “Ob ostatochnykh napriazheniiakh v okrestnosti tsilindricheskogo defekta sploshnosti viazkouprugoplasticheskogo materiala”, Prikl. mekhanika i tekhn. fizika, 47:2 (2006), 110–119.
[7] A. A. Burenin, L. V. Kovtaniuk, “Ostatochnye napriazheniia u tsilindricheskoi polosti v ideal'noi uprugoplasticheskoi srede”, Problemy mekhaniki neuprugikh deformatsii. Sbornik statei, posviashchennyi 70-letiiu D. D. Ivleva, 2001, 74–94, Fizmatlit, Moskva.
[8] A. A. Il'iushin, B. E. Pobedria, Osnovy matematicheskoi teorii termouprugosti, Nauka, M., 1970, 328 s.
[9] D. D. Ivlev, “Ob opredelenii peremeshchenii v uprugoplasticheskikh zadachakh teorii ideal'noi plastichnosti”, V kn. Uspekhi mekhaniki deformiruemykh sred (k 100-letiiu so dnia rozhdeniia akademika B. G. Galerkina), 1975, 236–240, Moskva.
[10] A. Iu. Ishlinskii, D. D. Ivlev, Matematicheskaia teoriia plastichnosti, Fizmatlit, M., 2001, 704 s.
[11] A. A. Burenin, L. V. Kovtaniuk, M. V. Polonik, “Formirovanie odnomernogo polia ostatochnykh napriazhenii v okrestnosti tsilindricheskogo defekta sploshnosti uprugoplasticheskoi sredy”, Prikl. matematika i mekhanika, 67:2 (2003), 316–325.

To content of the issue