On number of solutions for one class of elliptic equations with a spectral parameter and discontinuous nonlinearity |
D. K. Potapov |
2012, issue 1, P. 86–88 |
Abstract |
We consider the question of existence of Dirichlet’s problem solution for the Laplace equation with a spectral parameter and discontinuous on a phase variable nonlinearity. Using the variational method, we prove a theorem about a number of solutions. We result an example of discontinuous nonlinearity that satisfies to conditions of the theorem for which there is unique semiregular solution of this boundary problem. |
Keywords: Dirichlet’s problem, the Laplace equation, spectral parameter, discontinuous nonlinearity, variational method, number of solutions |
Download the article (PDF-file) |
References |
[1] V. N. Pavlenko, D. K. Potapov, “O sushchestvovanii lucha sobstvennykh znachenii dlia uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919. [2] D. K. Potapov, “O sushchestvovanii lucha sobstvennykh znachenii dlia uravnenii ellipticheskogo tipa s razryvnymi nelineinostiami v kriticheskom sluchae”, Vestn. S.-Peterb. un-ta, Ser. 10. Prikladnaia matematika. Informatika. Protsessy upravleniia. Vyp. 4, 2004, 125–132. [3] D. K. Potapov, “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniia dlia uravnenii ellipticheskogo tipa s razryvnymi nelineinostiami”, Differents. uravneniia, 44:5 (2008), 715–716. [4] M. A. Krasnosel'skii, A. V. Pokrovskii, “Pravil'nye resheniia uravnenii s razryvnymi nelineinostiami”, Dokl. AN SSSR, 226:3 (1976), 506–509. [5] M. A. Gol'dshtik, “Matematicheskaia model' otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 147:6 (1962), 1310–1313. [6] K. C. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. and Appl., 80:1 (1981), 102–129. [7] S. Agmon, A. Duglis, L. Nirenberg, Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, Izd-vo inostr. lit., M., 1962, 208 s. [8] I. I. Vainshtein, “Reshenie dvukh dual'nykh zadach o skleike vikhrevykh i potentsial'nykh techenii variatsionnym metodom M. A. Gol'dshtika”, Zhurn. SFU, Ser. Matem. i fiz. Vyp. 3, t. 4, 2011, 320–331. |