Far Eastern Mathematical Journal

To content of the issue


The numerical solution of a non-uniform problem theory of elasticity with the curvilinear interface


A. V. Rukavishnikov

2011, issue 2, P. 190–200


Abstract
In the paper a non-uniform problem of elasticity with the curvilinear interface between materials is considered. For these decision, the domain decomposition method in a combination to approximation of a problem by a nonconforming finite element method is applied. For a received system of a linear algebraic equations the effective iterative method with a block preconditioning is constructed. The analysis of numerical experiments is carried out.

Keywords:
iterative methods, preconditioners, saddle point problems, a decomposition method, a curvilinear interface, discontinuous Lame parameters

Download the article (PDF-file)

References

[1] Bernardi C., Maday Y., Patera A., “A New nonconforming approach to domain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and their Applications, Pitman, Paris, 1994, 13–51.
[2] Braess D., Dahmen W., Wieners C., “A multigrid algorithm for the mortar finite element methods”, SIAM Journal on Numerical Analysis, 37:1 (1999), 48–69.
[3] Flemisch B., Melenk J.M., Wohlmuth B., “Mortar methods with curved interfaces”, Applied Numerical Mathematics, 54:3–4 (2005), 339–361.
[4] Huang J., Zou J., “A mortar element method for elliptic problems with discontinuous coefficients”, IMA Journal of Numerical Analysis, 22:4 (2002), 549–576.
[5] Mikhailov V.P., Differentsial'nye uravneniia v chastnykh proizvodnykh, Nauka, Moskva, 1976, 391 s.
[6] S'iarle F., Metod konechnykh elementov dlia ellipticheskikh zadach, Mir, Moskva, 1980, 512 s.
[7] Rukavishnikov A.V., “O postroenii chislennogo metoda dlia zadachi Stoksa s razryvnym koeffitsientom viazkosti”, Vychislitel'nye tekhnologii, 14:2 (2009), 110–123.
[8] Bramble J.H., Pasciak J.E. and Vassilev A.T., “Analysis of the inexact Uzawa algorithm for saddle point problems”, SIAM Journal on Numerical Analysis, 34:3 (1997), 1072–1092.
[9] Elman H.C., Golub G.H., “Inexact and preconditioned Uzawa algorithms for saddle point problems”, SIAM Journal on Numerical Analysis, 31:6 (1994), 1645–1661.
[10] Saad Y., Iterative methods for sparse linear systems, PWS, New Jersey, 1994, 450 s.
[11] Il'in V. P., Metody konechnykh raznostei i konechnykh ob"emov dlia ellipticheskikh uravnenii, Izd-vo In-ta matematiki, Novosibirsk, 2000, 345 s.
[12] Little L., Saad Y. and Smoch L., “Block LU preconditioners for symmetric and nonsymmetric saddle point problems”, SIAM Journal on Scientific Computing, 25:2 (2003), 729–748.
[13] Kuznetsov Yu. A., “Efficient iterative solvers for elliptic finite elements problems on nonmatching grids”, Russian Journal of Numerical Analysis and Mathematical Modelling, 10:3 (1995), 187–211.
[14] Grisvard P., Elliptic problems in nonsmooth domains, Pitman, Boston, 1985, 422 s.

To content of the issue