Far Eastern Mathematical Journal

To content of the issue


The cohomology rings of asynchronous transition systems


V. E. Lopatkin

2011, issue 2, P. 181–189


Abstract
In this paper we introduce the cohomology rings of asynchronous transition systems. We'll show that different asynchronous transition systems which have isomorphic homology groups may have nonisomorphic cohomology rings.

Keywords:
the cohomology rings, the homology of the asynchronous transition systems, precubical sets, asynchronous transition systems

Download the article (PDF-file)

References

[1] A. A. Khusainov, V. E. Lopatkin, I. A. Treshchev, “Issledovanie matematicheskoi modeli parallel'nykh vychislitel'nykh protsessov metodami algebraicheskoi topologii”, Sib. zhurn. industr. matem., 11:1 (2008), 141 151 MathNet.ru/ http://mi.mathnet.ru/sjim495, MR http://www.ams.org/mathscinet-getitem?mr=2535256.
[2] A. A. Khusainov, V. V. Tkachenko, “Gruppy gomologii asinkhronnykh sistem perekhodov”, Matematicheskoe modelirovanie i smezhnye voprosy matematiki., Sbornik nauchnykh trudov, Izd-vo KhGPU, Khabarovsk, 2003, 23–33.
[3] A. A. Khusainov, V. V. Tkachenko, “O gruppakh gomologii asinkhronnykh sistem perekhodov”, Dal'nevost. matem. zhurn., 6:1-2 (2005), 23–38.
[4] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph. D. Thesis, University of Sussex, 1988, 222 pp.
[5] M. W. Shields, “Concurrent machines”, Computer Journal, 28 (1985), 449–465.
[6] A. A. Husainov, “On the homology of small categories and asynchronous transition system”, Homology, Homotopy Appl., 6:1 (2004), 439–471, http://www.rmi.acnet.ge/hha
[7] A. A. Husainov, On the Cubical Homology Groups of Free Partially Commutative Monoids, arXiv: math.CT/0611011.
[8] V. E. Lopatkin, “Kol'tsa kogomologii polukubicheskikh mnozhestv”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:2 (2010), 3–10.

To content of the issue