The cohomology rings of asynchronous transition systems |
V. E. Lopatkin |
2011, issue 2, P. 181–189 |
Abstract |
In this paper we introduce the cohomology rings of asynchronous transition systems. We'll show that different asynchronous transition systems which have isomorphic homology groups may have nonisomorphic cohomology rings. |
Keywords: the cohomology rings, the homology of the asynchronous transition systems, precubical sets, asynchronous transition systems |
Download the article (PDF-file) |
References |
[1] A. A. Khusainov, V. E. Lopatkin, I. A. Treshchev, “Issledovanie matematicheskoi modeli parallel'nykh vychislitel'nykh protsessov metodami algebraicheskoi topologii”, Sib. zhurn. industr. matem., 11:1 (2008), 141 151 MathNet.ru/ http://mi.mathnet.ru/sjim495, MR http://www.ams.org/mathscinet-getitem?mr=2535256. [2] A. A. Khusainov, V. V. Tkachenko, “Gruppy gomologii asinkhronnykh sistem perekhodov”, Matematicheskoe modelirovanie i smezhnye voprosy matematiki., Sbornik nauchnykh trudov, Izd-vo KhGPU, Khabarovsk, 2003, 23–33. [3] A. A. Khusainov, V. V. Tkachenko, “O gruppakh gomologii asinkhronnykh sistem perekhodov”, Dal'nevost. matem. zhurn., 6:1-2 (2005), 23–38. [4] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph. D. Thesis, University of Sussex, 1988, 222 pp. [5] M. W. Shields, “Concurrent machines”, Computer Journal, 28 (1985), 449–465. [6] A. A. Husainov, “On the homology of small categories and asynchronous transition system”, Homology, Homotopy Appl., 6:1 (2004), 439–471, http://www.rmi.acnet.ge/hha [7] A. A. Husainov, On the Cubical Homology Groups of Free Partially Commutative Monoids, arXiv: math.CT/0611011. [8] V. E. Lopatkin, “Kol'tsa kogomologii polukubicheskikh mnozhestv”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:2 (2010), 3–10. |