On the number of local minima of integer lattices |
A. A. Illarionov, Y. A. Soyka |
2011, issue 2, P. 149–154 |
Abstract |
Let $E_s(N)$ be the average number of local minima of $s$-dimensional integer lattices with determinant equals $N$. We prove the following estimates $$ \frac{2^{?1}}{(s?1)!}+O_s\left(\frac{1}{\ln N}\right) \le \frac{E_s(N)}{\ln^{s?1}N} \le \frac{2^s}{(s?1)!}+O_s\left(\frac{1}{\ln N}\right) $$ \noindent for any prime N. Using this result we have a new lower bound for maximum number of local minima of integer lattices. |
Keywords: local minimum, multidimensional continuous fraction |
Download the article (PDF-file) |
References |
[1] G. F. Voronoi, Sobranie sochinenii v 3-kh tomakh, t. 1, AN USSR, Kiev, 1952. [2] H. Minkowski, “Generalisation de la theorie des fraction continues”, Ann. Sci. E?cole Norm. Sup., 13:2 (1896), 41–60. [3] V. A. Bykovskii, “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, DAN, 389:2 (2003), 154–155. [4] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, MTsNMO, M., 2004. [5] M. O. Avdeeva, “Otsenka kolichestva lokal'nykh minimumov tselochislennykh reshetok”, Chebyshevskii sbornik, 5:4 (2004), 35–38. [6] O. A. Gorkusha, N. M. Dobrovol'skii, “Ob otsenkakh giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sbornik, 6:2 (2005). [7] M. O. Avdeeva, “O nizhnikh otsenkakh kolichestva lokal'nykh minimumov tselochislennykh reshetok”, Fundamental'naia i prikladnaia matematika, 11:6 (2005), 9–14. [8] M. O. Avdeeva, V. A. Bykovskii, “Verkhnie i nizhnie otsenki konstanty Voronogo-Minkovskogo”, Matem. zametki, 87:4 (2010), 483–491. [9] H. Heilbronn, “On the average length of a class of finite continued fractions”, Abhandlungen aus zahlentheorie und Analysis, VEB, Berlin, 1968, 89–96. [10] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28. [11] A. A. Illarionov, Srednee kolichestvo otnositel'nykh minimumov trekhmernykh tselochislennykh reshetok fiksirovannogo opredelitelia, Preprint KhO IMP DVO RAN № 2, Dal'Nauka, Vladivostok, 2010. [12] A. A. Illarionov, “Multidimentional generalisation of Heilbronn's theorem about average length of finite continued fractions”, Abstracts of 27th Journees Arithmetiques, 2011. [13] Dzh. V. Kassels, Vvedenie v geometriiu chisel, Mir, M., 1995. |