The arithmetic nature of the triple and quintuple product identities |
N. V. Budarina, V. A. Bykovskii |
2011, issue 2, P. 140–148 |
Abstract |
In this paper the new proof is suggested for decomposition of twisted with quadratic characters modulo 4 and 3 theta-functions to the infinite product. It is based on the Euler's method of logarithmic derivation and the elementary arithmetic concepts. |
Keywords: theta-function, Liouville identities, infinite product |
Download the article (PDF-file) |
References |
[1] B. C. Berndt, Ramanujan's notebooks, v. III, Springer-Verlag, New York, 1991, 510 pp. [2] D. Foata, Guo-Niu Han, “The triple, quintuple and septuple product identities revisited”, Se?m. Lothar. Combin., 42 (1999), Art. B42o, 12 pp. (electronic). [3] E. V. Wright, “An enumerative proof of an identity of Jacobi”, J. London Math. Soc., 40 (1965), 55–57. [4] C. Jr. Sudler, “Two enumerative proofs of an identity of Jacobi”, Proc. Edinburgh Math. Soc. (2), 15 (1966), 67–71. [5] George E. Andrews, “A simple proof of Jacobi's triple product identity”, Proc. Amer. Math. Soc., 16 (1965), 333–334. [6] B. Gordon, “Some identities in combinatorial analysis”, Quart. J. Math. Oxford, Ser. (2), 12 (1961), 285–290. [7] I. G. Macdonald, “Affine root systems and Dedekind's $\eta$-function”, Invent. Math., 15 (1972), 91–143. [8] A. M. Vershik, “A bijective proof of the Jacobi identity, and reshapings of the Young diagrams”, Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 155, 1986, 3–6, 193; translation in J. Soviet. Math., 41:2 (1988), 889–891. [9] Herbert S. Wilf, “The number-theoretic content of the Jacobi triple product identity”, The Andrews Festschrift (Maratea, 1998), Se?m. Lothar. Combin., 42, 1999, Art. B42k, 4 pp. (electronic). [10] B. A. Venkov, Elementarnaia teoriia chisel, ONTI NKPT SSSR, 1937, 222 s. [11] J. V. Uspensky, M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company, Inc., New York, 1939, 484 pp. [12] Kenneth S. Williams, Number theory in the spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge University Press, Cambridge, 2011, 287 pp. |