On Gauss — Kuz'min statistics in short intervals |
A. V. Ustinov |
2011, issue 1, P. 93–98 |
Abstract |
The article is devoted to investigation of Gauss — Kuz'min statistics for rational numbers $a/b$, where $b$ is fixed, $1\le a\le b$, $(a,b)=1$. New asymptotic formula for the mean value of Gauss — Kuz'min statistics is proved. It sharpens previous result which is similar to the Porter's theorem. |
Keywords: Euclidean algorithm, continued fractions, Kloosterman sums, Gauss — Kuz'min statistics |
Download the article (PDF-file) |
References |
[1] V. A. Bykovskii, “Asimptoticheskie svoistva tselykh tochek $(a_1,a_2)$, udovletvoriaiushchikh sravneniiu $a_1 a_2 \equiv l \pmod{q}”, Zapiski nauchnykh seminarov LOMI, 112, 1981, 5–25. [2] V. A. Bykovskii, A. V. Ustinov, “Statistika traektorii chastits v neodnorodnoi zadache Sinaia dlia dvumernoi reshetki”, Izvestiia RAN, 73:4 (2009), 17–36. [3] A. V. Ustinov, “O statisticheskikh svoistvakh konechnykh tsepnykh drobei”, Zapiski nauchn. semin. POMI, 322, 2005, 186–211. [4] A. V. Ustinov, “O chisle reshenii sravneniia $xy \equiv l \pmod{q}$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216. [5] A. V. Ustinov, “O srednem chisle shagov v algoritme Evklida s vyborom minimal'nogo po moduliu ostatka”, Mat. zametki, 85:1 (2009), 153–156. [6] A. V. Ustinov, “O srednem chisle shagov v algoritme Evklida s nechetnymi nepolnymi chastnymi”, Mat. zametki, 88:4 (2010), 594–604. [7] A. V. Ustinov, “O raspredelenii chisel Frobeniusa s tremia argumentami”, Mat. sbornik, 200:4 (2010), 131–160. [8] T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86. [9] G. Lochs, “Statistik der Teilnenner der zu den echten Bru?chen geho?rigen regelma?ssigen Kettenbru?che”, Monatsh. Math., 65 (1961), 27–52. [10] H. Petersson, “U?ber eine Funktion von G. Lochs und die Diskriminante der elliptischen Funktionen”, Monatsh. Math., 67 (1963), 243–258. [11] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28. |