The problem of acoustic sounding within fluctuation ocean |
I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov |
2011, issue 1, P. 76–87 |
Abstract |
The work is devoted to the problems of acoustic tomography in random media. In terms of a model based on the non-stationary transfer equation energy density of acoustic waves, the problem of acoustic location from measurement data that correspond to the schema of the side-looking sonar. |
Keywords: transfer equation, acoustic tomography |
Download the article (PDF-file) |
References |
[1] M. D. Ageev, L. V. Kiselev, Iu. V. Matvienko i dr., Avtonomnye podvodnye roboty: sistemy i tekhnologii, pod obshch. red. M. D. Ageeva, Nauka, M., 2005, 398 s. [2] W. W. Bonifant (Jr.), Interferometic synthetic aperture sonar processing, A thesis presented to the Academic Faculty in partial fulfillment of the requirements for the Degree Master of Science in Electrical Engineering, Georgia Institute of Technology, 1999, xxv+166 s. [3] V. V. Zolotarev, “Gidrolokatory s sintezirovannoi aperturoi dlia avtonomnogo podvodnogo robota”, Podvodnye issledovaniia i robototekhnika, 1(3) (2007), 21–26. [4] Iu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknaria, E. V. Tutynin, “Puti sovershenstvovaniia gidroakusticheskikh tekhnologii obsledovaniia morskogo dna s ispol'zovaniem avtonomnykh neobitaemykh podvodnykh apparatov”, Podvodnye issledovaniia i robototekhnika, 2(8) (2008), 4–15. [5] Iu. N. Barabanenkov, Iu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Sostoianie rasprostraneniia voln v sluchaino-neodnorodnoi srede”, Uspekhi fiz. nauk, 102:1 (1970), 3–42. [6] A. Isimaru, Rasprostranenie i rasseianie voln v sluchaino-neodnorodnykh sredakh, t. 1, 2, Mir, M., 1981. [7] L. A. Apresian, Iu. A. Kravtsov, Teoriia perenosa izlucheniia, Nauka, M., 1983, 216 s. [8] I. O. Iaroshchuk, O. E. Gulin, Metod statisticheskogo modelirovaniia v zadachakh gidroakustiki, Dal'nauka, Vladivostok, 2002, 352 s. [9] Spravochnik po gidroakustike, red. A. E. Kolesnikov, Sudostroenie, L., 1982, 344 s. [10] P. Miln, Podvodnye inzhenernye issledovaniia, Sudostroenie, L., 1984, 340 s. [11] K. Klei, G. Medvin, Akusticheskaia okeanografiia, Mir, M., 1980, 582 s. [12] G. Bal, J. B. Keller, G. Papanicolaou, and L. Ryzhik, “Transport theory for acoustic waves with reflection and transmission at interfaces”, Wave Motion, 30 (1999), 303–327. [13] G. Bal, “Kinetics of scalar wave fields in random media”, Wave Motion, 43 (2005), 132–157. [14] G. Bal, “Radiative transfer equations with varying refractive index: a mathematical perspective”, J. Opt. Soc. Am. A, 23:7 (2006), 1639–1644. [15] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlia uravneniia perenosa izlucheniia s obobshchennymi usloviiami sopriazheniia na granitse razdela sred”, Izvestiia RAN. Seriia matematicheskaia, 67:6 (2003), 169–192. [16] I. V. Prokhorov, “O strukture mnozhestva nepreryvnosti resheniia kraevoi zadachi dlia uravneniia perenosa izlucheniia”, Matematicheskie zametki, 86:2 (2009), 256–272. [17] J. Voigt, “Positivity in time dependent linear transport theory”, Acta Applicandae Mathematicae, 2 (1984), 311–331. [18] N. B. Maslova, “Matematicheskie metody issledovaniia uravneniia Bol'tsmana”, Algebra i analiz, 3:1 (1991), 3–56. [19] V. R. Kireitov, “Mnogoskorostnoi potentsial paierlsa v zadache utochneniia klassicheskogo fundamental'nogo akusticheskogo potentsiala vblizi istochnika zvuka v odnorodnom maksvellovskom gaze”, Sibirskii matematicheskii zhurnal, 40:4 (1999), 834–860. [20] I. V. Prokhorov, I. P. Yarovenko, V. G. Nazarov, “Optical tomography problems at layered media”, Inverse Problems, 24:2 (2008), 025019, 13 pp. [21] I. V. Prokhorov, “Opredelenie poverkhnosti razdela sred po dannym tomograficheskogo prosvechivaniia”, Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 42:10 (2002), 1542–1555. |