On cylindrical minima of three-dimensional lattices |
A. A. Illarionov |
2011, issue 1, P. 37–47 |
Abstract |
Nonzero point $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ of three-dimensional lattice $\Gamma$ is called by cylindrical minimum if there exist no nonzero point $\eta=(\eta_1,\eta_2,\eta_3)$ such as $$ \eta^2_1+\eta^2_2 \le \gamma^2_1+\gamma^2_2, \quad |\eta_3|\le |\gamma_3|, \quad |\gamma|<|\eta|. $$ \noinden It is proved that the average number of cylindrical minima of three-dimensional integer lattices with determinant from $[1;N]$ is equal $$ C?\ln N+O(1), $$ |
Keywords: minimum of lattice, multi-dimensional continuous fraction |
Download the article (PDF-file) |
References |
[1] G. F. Voronoi, Sobranie sochinenii v 3-kh tomakh, t. 1, Izd-vo AN USSR, Kiev, 1952. [2] G. Lochs, “Statistik der Teilnenner der zu den echten Bru?chen geho?rigen regelma?ssigen Kettenbru?che”, Monatsh. Math., 65 (1961), 27–52. [3] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Papers in Honor of Edmund Landau, Plenum, New York, 1969, 87–96. [4] A. A. Illarionov, “Srednee kolichestvo otnositel'nykh minimumov trekhmernykh tselochislennykh reshetok”, Algebra i analiz, 23 (2011) (v pechati). [5] B. N. Delone, D. K. Faddeev, “Teoriia irratsional'nostei tret'ei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.-L., 1940, 3–340. [6] P. G. L. Dirikhle, Lektsii po teorii chisel, ONTI, M.–L., 1936. |