Far Eastern Mathematical Journal

To content of the issue


On cylindrical minima of three-dimensional lattices


A. A. Illarionov

2011, issue 1, P. 37–47


Abstract
Nonzero point $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ of three-dimensional lattice $\Gamma$ is called by cylindrical minimum if there exist no nonzero point $\eta=(\eta_1,\eta_2,\eta_3)$ such as
$$
\eta^2_1+\eta^2_2 \le \gamma^2_1+\gamma^2_2, \quad |\eta_3|\le |\gamma_3|, \quad |\gamma|<|\eta|.
$$
\noinden It is proved that the average number of cylindrical minima of three-dimensional integer lattices with determinant from $[1;N]$ is equal
$$
C?\ln N+O(1),
$$

Keywords:
minimum of lattice, multi-dimensional continuous fraction

Download the article (PDF-file)

References

[1] G. F. Voronoi, Sobranie sochinenii v 3-kh tomakh, t. 1, Izd-vo AN USSR, Kiev, 1952.
[2] G. Lochs, “Statistik der Teilnenner der zu den echten Bru?chen geho?rigen regelma?ssigen Kettenbru?che”, Monatsh. Math., 65 (1961), 27–52.
[3] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Papers in Honor of Edmund Landau, Plenum, New York, 1969, 87–96.
[4] A. A. Illarionov, “Srednee kolichestvo otnositel'nykh minimumov trekhmernykh tselochislennykh reshetok”, Algebra i analiz, 23 (2011) (v pechati).
[5] B. N. Delone, D. K. Faddeev, “Teoriia irratsional'nostei tret'ei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.-L., 1940, 3–340.
[6] P. G. L. Dirikhle, Lektsii po teorii chisel, ONTI, M.–L., 1936.

To content of the issue