Far Eastern Mathematical Journal

To content of the issue

Experimental research of Frobenius problem for three arguments

I. S. Vorobjov

2011, issue 1, P. 3–9

The paper describes some numerical results concerning Frobenius problem. Density distribution functions are calculated for $frac{f(a,b,c)}{sqrt{abc}}$, $frac{N(a,b,c)}{sqrt{abc}}$ and $frac{N(a,b,c)}{f(a,b,c)}$, where $f(a,b,c)$ is modified Frobenius number (largest integer $M$ such that equation $ax+by+cz=M$ does not have positive integer solution) and $N(a,b,c)$ is modified genus of numerical semigroup generated by $a,b,c$. Expectations of the same ratios are calculated numerically. The paper also contains new sharp lower bound for genus: $N(a,b,c) \ge \frac{5\sqrt{3}}{9}\sqrt{abc}$.

continued fractions, Frobenius numbers

Download the article (PDF-file)


[1] V. Arnold, Arnold’s Problems, Springer, 2005 mathscinet.
[2] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math, 1960, no. 12, 390–398.
[3] O. Ro?dseth, “On a Linear Diophantine Problem of Frobenius”, J. Reine Angew. Math, 301 (1978), 171–178.
[4] E. S. Selmer and O?. Beyer, “On the linear diophantine problem of Frobenius in three variables”, J. Reine Angew. Math, 301 (1978), 161–170.
[5] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Inventiones mathematicae, 181:1, 179–207.
[6] A. V. Ustinov, “Reshenie zadachi Arnol'da o slaboj asimptotike dlja chisel Frobeniusa s tremja argumentami”, Matem. sb., 200:4 (2009), 131–160.
[7] O. Ro?dseth, “Weighted multi-connected loop networks”, Discrete Mathematics, 148:1-3 (1996), 161–173.
[8] L. G. Fel, “Weak asymptotics in the 3-dim Frobenius problem”, Funct. Anal. Other Math., 2009, no. 2, 179–202.
[9] H. S. Wilf, “A circle-of-lights algorithm for the “money-changing problem”, Am. Math. Monthly, 85 (1978), 562–565.
[10] V. I. Arnol'd, Jeksperimental'noe nabljudenie matematicheskih faktov, MCNMO, M., 2006.
[11] M. Beck, D. Einstein, Sh. Zacks, “Some experimental results on the Frobenius problem”, Experiment. Math., 12:3 (2003), 263–269
[12] D. Beihoffer, J. Hendry, A. Nijenhuis, S. Wagon, “Faster algorithms for Frobenius numbers”, Electron. J. Combin., 12:1 (2005), research paper 27
[13] A. V. Ustinov, “O raspredelenii chisel Frobeniusa s tremja argumentami”, Izv. RAN ser. matem., 74:5 (2010), 145–170
[14] J. L. Davison, “On the Linear Diophantine Problem of Frobenius”, Journal of Number Theory, 48:3 (1994), 353–363
[15] J. Marklof, A. Stro?mbergsson, Diameters of random circulant graphs, arXiv: 1103.3152v1

To content of the issue