On convergence duality methods in variation inequality of Signorini |
A. S. Tkachenko |
2010, issue 1, P. 70–79 |
Abstract |
Research duality methods constructed on basis of classical and modify functionals of Lagrange. |
Keywords: duality methods, functional of Lagrange, saddle point, Uzawa method |
Download the article (PDF-file) |
References |
[1] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variacionnyx neravenstv v mexanike, Mir, M., 1986. [2] R. Glovinski, Zh.-L. Lions, R. Tremol'er, Chislennoe issledovanie variacionnyx neravenstv, Mir, M., 1979. [3] R. Glowinski, Numerical methods for nonlinear variational problems, Springer, New York, 1984. [4] G. Vu, R. V. Namm, S. A. Sachkov, “Iteracionnyj metod poiska sedlovoj tochki dlya polukoe'rcitivnoj zadachi Sin'orini, osnovannyj na modificirovannom funkcionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36. [5] G. Vu, R. V. Namm, S. A. Sachkov, “Metod iterativnoj proksimal'noj regulyarizacii dlya poiska sedlovoj tochki v polukoe'rcitivnoj zadache Sin'orini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031. [6] E'. M. Vixtenko, R. V. Namm, “Xarakteristicheskie svojstva modificirovannogo funkcionala Lagranzha v polukoe'rcitivnoj skalyarnoj zadache Sin'orini”, Vestnik TOGU, 2008, № 4(11), 77–86. [7] R. V. Namm, A. S. Tkachenko, “Reshenie polukoe'rcitivnoj skalyarnoj zadachi Sin'orini metodom Udzavy”, Vestnik TOGU, 2007, № 4(7), 161–170. [8] G. Dyuvo, Zh.-L. Lions, Neravenstva v fizike i mexanike, Nauka, M., 1980. [9] F. Scarpini, M. A. Vivaldi, “Error estimates for the approximation of some unilateral problems”, R.A.I.R.O. Analyse Numeriqe, Numerical Analysis, 1977, no. 11, 197–208. |