Far Eastern Mathematical Journal

To content of the issue


On convergence duality methods in variation inequality of Signorini


A. S. Tkachenko

2010, issue 1, P. 70–79


Abstract
Research duality methods constructed on basis of classical and modify functionals of Lagrange.

Keywords:
duality methods, functional of Lagrange, saddle point, Uzawa method

Download the article (PDF-file)

References

[1] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variacionnyx neravenstv v mexanike, Mir, M., 1986.
[2] R. Glovinski, Zh.-L. Lions, R. Tremol'er, Chislennoe issledovanie variacionnyx neravenstv, Mir, M., 1979.
[3] R. Glowinski, Numerical methods for nonlinear variational problems, Springer, New York, 1984.
[4] G. Vu, R. V. Namm, S. A. Sachkov, “Iteracionnyj metod poiska sedlovoj tochki dlya polukoe'rcitivnoj zadachi Sin'orini, osnovannyj na modificirovannom funkcionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36.
[5] G. Vu, R. V. Namm, S. A. Sachkov, “Metod iterativnoj proksimal'noj regulyarizacii dlya poiska sedlovoj tochki v polukoe'rcitivnoj zadache Sin'orini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031.
[6] E'. M. Vixtenko, R. V. Namm, “Xarakteristicheskie svojstva modificirovannogo funkcionala Lagranzha v polukoe'rcitivnoj skalyarnoj zadache Sin'orini”, Vestnik TOGU, 2008, № 4(11), 77–86.
[7] R. V. Namm, A. S. Tkachenko, “Reshenie polukoe'rcitivnoj skalyarnoj zadachi Sin'orini metodom Udzavy”, Vestnik TOGU, 2007, № 4(7), 161–170.
[8] G. Dyuvo, Zh.-L. Lions, Neravenstva v fizike i mexanike, Nauka, M., 1980.
[9] F. Scarpini, M. A. Vivaldi, “Error estimates for the approximation of some unilateral problems”, R.A.I.R.O. Analyse Numeriqe, Numerical Analysis, 1977, no. 11, 197–208.

To content of the issue