Far Eastern Mathematical Journal

To content of the issue


Boundary-value problem for the polarized-radiation transfer equation in layered medium


A. E. Kovtanyuk, I. V. Prokhorov

2010, issue 1, P. 50–59


Abstract
The boundary-value problem for polarized-radiation transfer equation in layered medium with Fresnel matching conditions at the boundaries of the medium partition is examined. The theorems of solvability of the boundary-value problem are proved, the continuity properties for its solution are examined.

Keywords:
vector transfer equation, polarized radiation, Fresnel interface conditions

Download the article (PDF-file)

References

[1] G. I. Marchuk, G. A. Mixajlov, M. A. Nazarliev i dr., Metod Monte-Karlo v atmosfernoj optike, Nauka, Novosibirsk, 1976.
[2] T. A. Germogenova, N. V. Konovalov, M. G. Kuz'mina, “Osnovy matematicheskoj teorii perenosa polyarizovannogo izlucheniya (strogie rezul'taty)”, Princip invariantnosti i ego prilozheniya, Trudy Vsesoyuznogo simpoziuma (Byurakan, 1981), Izd-vo An ArmSSR, Erevan, 1989, 271–284.
[3] G. A. Mixajlov, S. A. Uxinov, A. S. Chimaeva, “Dispersiya standartnoj vektornoj ocenki metoda Monte-Karlo v teorii perenosa polyarizovannogo izlucheniya”, Zhurnal vychislitel'noj matematiki i mat. fiziki, 46:11 (2006), 2099–2113.
[4] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanij, M., 2006.
[5] A. V. Latyshev, “Vektornaya kraevaya zadacha Rimana-Gil'berta v granichnyx zadachax rasseyaniya polyarizovannogo izlucheniya”, Zhurnal vychislitel'noj matematiki i mat. fiziki, 35:7 (1995), 1108–1127.
[6] A. E. Kovtanyuk, I. V. Prokhorov, “Tomography problem for the polarized-radiation transfer equation”, J. Inverse and Ill-Posed Problems, 14:6 (2006), 1–12.
[7] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoj teorii perenosa chastic”, Tr. MIAN SSSR, 61, 1961, 3–158.
[8] T. A. Germogenova, Lokal'nye svojstva reshenij uravneniya perenosa, Nauka, M., 1986.
[9] D. S. Anikonov, A. E. Kovtanyuk, and I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht – Boston, 2002, viii+208 pp.
[10] G. V. Rozenberg, “Vektor-parametr Stoksa”, Uspexi fiz. nauk, 56:1 (1955), 77–109.
[11] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchajno-neodnorodnyx sredax, t. 1, 2, Mir, M., 1981.
[12] L. A. Apresyan, Yu. A. Kravcov, Teoriya perenosa izlucheniya, Nauka, M., 1983.
[13] V. S. Potapov, “Metod resheniya uravneniya teorii perenosa dlya opticheski tolstogo sloya s otrazhayushhimi granicami”, Teoreticheskaya i matematicheskaya fizika, 100:2 (1994), 287–302.
[14] I. V. Proxorov, “O razreshimosti kraevoj zadachi dlya uravneniya perenosa izlucheniya s obobshhennymi usloviyami sopryazheniya na granice razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192.
[15] I. V. Prokhorov, I. P. Yarovenko, and T. V. Krasnikova, “An extremum problem for the radiation transfer equation”, Journal of Inverse and Ill-Posed Problems, 13:4 (2005), 365–382.
[16] M. Born, E. Wolf, Principles of Optics, Pergamon, Oxford, 1968.

To content of the issue