On the maximum of the Moebius invariant in the four disjoint domain problem |
D. A. Kirillova |
2010, issue 1, P. 41–49 |
Abstract |
Let $r(D,a)$ denote the conformal radius of the domain $D$ with respect to the point $a$. In this paper we obtain the supremum of the product $$ \prod_{k=1}^{4}\frac{r(D_{k},a_{k})}{|a_{k+1}-a_{k}|}, \quad a_{5}:=a_{1} $$ for all simply connected disjoint domains $D_{k}\subset\overline{\mathbb{C}}$ and points $a_{k}\in D_{k}$, $k=1,\ldots,4$. Using the method of interior variations due to $M$. Schiffer we establish the form of quadratic differential associated with extremal partition problem $\prod\limits_{k=1}^{n}r(D_{k},a_{k})|a_{k+1}-a_{k}|^{-1}\to\sup$ for arbitrary $n\ge 3$. For $n=4$ we studed the circle domains and their boundaries for the corresponding quadratic differential. |
Keywords: conformal radius, Moebius invariants, extremal partitions, quadratic differential |
Download the article (PDF-file) |
References |
[1] G. M. Goluzin, Geometricheskaya teoriya funkcij kompleksnogo premennogo, Nauka, M., 1966, 628 s. [2] V. N. Dubinin, “Simmetrizaciya v geometricheskoj teorii funkcij kompleksnogo peremennogo”, Uspexi matematicheskix nauk, 49:1 (1994), 3–76. [3] G. V. Kuz'mina, “Metody geometricheskoj teorii funkcij I, II”, Algebra i analiz, 9:3 (1997), 41–103 (5, 1–50); 5, 1–50. [4] M. A. Lavrent'ev, “K teorii konformnyx otobrazhenij”, Trudy fiz. mat. in-ta im. V. A. Steklova, 5, 1934, 159–245. [5] A. K. Baxtin, G. P. Baxtina, Yu. B. Zelinskij, Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize, 73, In-t matematiki NAN Ukraini, 2008, 308 s. [6] G. V. Kuz'mina, “K zadache o maksimume proizvedeniya konformnyx radiusov nenalegayushhix oblastej”, Zap. nauchn. semin. LOMI, 100, 1980, 131–145. [7] S. I. Fedorov, “O maksimume odnogo konformnogo invarianta v zadache o nenalegayushhix oblastyax”, Zap. nauchn. semin. LOMI, 112, 1981, 172–183. [8] A. K. Baxtin, “Kusochno-razdelyayushhee preobrazovanie i e'kstremal'nye zadachi so svobodnymi polyusami”, Doklady RAN, 405:2 (2005), 151–153. [9] V. N. Dubinin, D. A. Kirillova, “K zadacham ob e'kstremal'nom razbienii”, Zap. nauchn. semin. POMI, 357, 2008, 54–74. [10] G. V. Kuz'mina, Moduli semejstv krivyx i kvadratichnye differencialy, Trudy Matem. in-ta im. V. A. Steklova, 139, 1980, 241 s. |