The threshold behavior of mechanical characteristics in Non-Euclidean model of continua |
M. A. Guzev, M. A. Shepelov |
2010, issue 1, P. 20–30 |
Abstract |
The behavior of the material containing dislocations is investigated. The Non-Euclidean model of continua is used for description of the stress state. It is shown that the obtained solution is characterized by the threshold behavior. |
Keywords: dislocations, defects of structure, the Burgers tensor, Non-Euclidean model of continua |
Download the article (PDF-file) |
References |
[1] V. L. Berdichevskij, L. I. Sedov, “Dinamicheskaya teoriya nepreryvno raspredelennyx dislokacij. Svyaz' s teoriej plastichnosti”, PMM, 31:6 (1967), 981–1000. [2] A. Kadich, D. E'delen, Kalibrovochnaya teoriya dislokacij i disklinacij, Mir, M., 1987. [3] V. E. Panin, Yu. V. Grinyaev, V. I. Danilov i dr., Strukturnye urovni plasticheskoj deformacii i razrusheniya, Nauka, Novosibirsk, 1990. [4] A. V. Grachev, A. I. Nesterov, and S. G. Ovchinikov, “The Gauge Theory of Point Defects”, Phys. Stat. Sol. (b), 156 (1989), 403–410. [5] M. A. Guzev, V. P. Myasnikov, “Termomexanicheskaya model' uprugo-plasticheskogo materiala s defektami struktury”, MTT, 1998, № 4, 156–172. [6] V. P. Myasnikov, M. A. Guzev, “Affinno-metricheskaya struktura uprugo-plasticheskoj modeli sploshnoj sredy”, Trudy MIAN, 223, 1998, 30–37. [7] V. P. Myasnikov, M. A. Guzev, “Geometricheskaya model' defektnoj struktury uprugo-plasticheskoj sploshnoj sredy”, PMTF, 40:2 (1999), 163–173. [8] V. P. Myasnikov, M. A. Guzev, “Neevklidova model' deformirovaniya materialov na razlichnyx strukturnyx urovnyax”, Fizicheskaya mezomexanika, 3:1 (2000),. [9] S. K. Godunov, E. I. Romenskij, E'lementy mexaniki sploshnyx sred i zakony soxraneniya, Nauchnaya kniga, Novosibirsk, 1998. [10] I. Prigozhin, D. Kodepudi, Sovremennaya termodinamika: ot teplovyx dvigatelej do dissipativnyx struktur, Mir, M., 2002. [11] L. D. Landau, E. M. Lifshic, Teoriya polya, Nauka, M., 1988. [12] L. I. Sedov, Mexanika sploshnoj sredy, 2, Nauka, M., 1973. |