Far Eastern Mathematical Journal

To content of the issue


The solvability of the nonstationary problem for the model system of the barotropic gas flows


E. V. Lukina

2001, issue 1, P. 37–52


Abstract
Considered an approximate system Navier-Stokes equtions for the compressible viscous barotropic flows. The nonpotential flows are considered. The global existence of the weak solutions for the 3-dimensional problem is obtained. In the case the 2-dimensional the theorem of the existense and uniqueness is proved. The proof of main result is based on a new priori estimates.

Keywords:

Download the article (PDF-file)

References

[1] L. G. Lojcyanskij, Mexanika zhidkosti i gaza, M., 1970.
[2] L. I. Sedov, Mexanika sploshnoj sredy, t. 1, M., 1970.
[3] V. A. Vajgant, A. V. Kazhixov, “Global'nye resheniya uravnenij potencial'nyx techenij szhimaemoj vyazkoj zhidkosti pri malyx chislax Rejnol'dsa”, Differenc. uravneniya, 30:6 (1994).
[4] V. V. Ragulin, “K zadache protekaniya dlya uravnenij ideal'noj zhidkosti”, Matematicheskie problemy mexaniki, t. 43, Dinamika sploshnoj sredy, Novosibirsk, 1979, 79–90.
[5] S. Agmon, A. Duglis, L. Nirenberg, Ocenki vblizi granicy reshenij e'llipticheskix uravnenij v chastnyx proizvodnyx pri obshhix granichnyx usloviyax, Izd-vo inostr. lit., M., 1962.
[6] V. A. Solonnikov, “Pereopredelennye e'llipticheskie zadachi”, Kraevye zadachi matematicheskoj fiziki, Nauka, L., 1971.
[7] S. N. Antoncev, A. V. Kazhixov, V. N. Monaxov, Kraevye zadachi mexaniki neodnorodnyx zhidkostej, Novosibirsk, 1983.
[8] O. V. Besov, V. P. Il'in, S. M. Nikol'skij, Integral'nye predstavleniya funkcij i teoremy vlozheniya, Nauka, M., 1975.
[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linejnye i kvazilinejnye uravneniya parabolicheskogo tipa, Nauka, M., 1976.

To content of the issue