The solvability of the nonstationary problem for the model system of the barotropic gas flows |
E. V. Lukina |
2001, issue 1, P. 37–52 |
Abstract |
Considered an approximate system Navier-Stokes equtions for the compressible viscous barotropic flows. The nonpotential flows are considered. The global existence of the weak solutions for the 3-dimensional problem is obtained. In the case the 2-dimensional the theorem of the existense and uniqueness is proved. The proof of main result is based on a new priori estimates. |
Keywords: |
Download the article (PDF-file) |
References |
[1] L. G. Lojcyanskij, Mexanika zhidkosti i gaza, M., 1970. [2] L. I. Sedov, Mexanika sploshnoj sredy, t. 1, M., 1970. [3] V. A. Vajgant, A. V. Kazhixov, “Global'nye resheniya uravnenij potencial'nyx techenij szhimaemoj vyazkoj zhidkosti pri malyx chislax Rejnol'dsa”, Differenc. uravneniya, 30:6 (1994). [4] V. V. Ragulin, “K zadache protekaniya dlya uravnenij ideal'noj zhidkosti”, Matematicheskie problemy mexaniki, t. 43, Dinamika sploshnoj sredy, Novosibirsk, 1979, 79–90. [5] S. Agmon, A. Duglis, L. Nirenberg, Ocenki vblizi granicy reshenij e'llipticheskix uravnenij v chastnyx proizvodnyx pri obshhix granichnyx usloviyax, Izd-vo inostr. lit., M., 1962. [6] V. A. Solonnikov, “Pereopredelennye e'llipticheskie zadachi”, Kraevye zadachi matematicheskoj fiziki, Nauka, L., 1971. [7] S. N. Antoncev, A. V. Kazhixov, V. N. Monaxov, Kraevye zadachi mexaniki neodnorodnyx zhidkostej, Novosibirsk, 1983. [8] O. V. Besov, V. P. Il'in, S. M. Nikol'skij, Integral'nye predstavleniya funkcij i teoremy vlozheniya, Nauka, M., 1975. [9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linejnye i kvazilinejnye uravneniya parabolicheskogo tipa, Nauka, M., 1976. |