Far Eastern Mathematical Journal

To content of the issue


Condenser capacity and symmetrization in the extremal decomposition problems


V. N. Dubinin

2009, issue 1-2, P. 84–93


Abstract
Capacity approach and Steiner symmetrization are applied to the solution of two extremal decomposition problems on the Riemann sphere. First, the inequality between generalized reduced moduli with respect to the inner points and the reduced moduli of the strips and half–strips are established. The second problem comes under the heading of extremal decompositions with the free poles on the concentric circles. The results obtained are complementary to some classical and recent theorems in various ways.

Keywords:
capacity of condenser, reduced modulus, Steiner symmetrization, Green's function, Robin function, extremal decomposition

Download the article (PDF-file)

References

[1] G. V. Kuz'mina, “Metody geometricheskoj teorii funkcij II”, Algebra i analiz, 9:5 (1997), 1–50.
[2] G. V. Kuz'mina, “Ob odnom e'kstremal'no-metricheskom podxode k zadacham ob e'kstremal'nom razbienii”, Zap. nauchn. semin. POMI, 337, 2006, 191–211.
[3] G. V. Kuz'mina, “O simmetrichnyx konfiguraciyax v zadachax ob e'kstremal'nom razbienii”, Zap. nauchn. semin. POMI, 350, 2007, 160–172.
[4] E. G. Emel'yanov, “O kvadratichnyx differencialax v mnogosvyaznyx oblastyax, yavlyayushhixsya polnymi kvadratami II”, Zap. nauchn. semin. POMI, 350, 2007, 40–51.
[5] V. N. Dubinin, “Simmetrizaciya v geometricheskoj teorii funkcij kompleksnogo peremennogo”, Uspexi matem. nauk, 49:1 (1994), 3–76.
[6] A. K. Baxtin, “Kusochno razdelyayushhee preobrazovanie i e'kstremal'nye zadachi so svobodnymi polyusami na luchax”, Dopov. NAN Ukraini, 12, 2004, 7–13.
[7] A. K. Baxtin, G. P. Baxtina, Yu. B. Zelinskij, Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize, Institut matematiki NAN Ukrainy, Kiev, 2008.
[8] E. G. Emel'yanov, “O svyazi dvux zadach ob e'kstremal'nom razbienii”, Zap. nauchn. semin. LOMI, 160, 1987, 91–98.
[9] V. N. Dubinin, “Asimptotika modulya vyrozhdayushhegosya kondensatora i nekotorye ee primeneniya”, Zap. nauchn. semin. POMI, 237, 1997, 56–73.
[10] V. N. Dubinin, “Obobshhennye kondensatory i asimptotika ix emkostej pri vyrozhdenii nekotoryx plastin”, Zap. nauchn. semin. POMI, 302, 2003, 38–51.
[11] P. Duren, M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pacific J.Math., 148 (1991), 251–273.
[12] P. Duren, M. Schiffer, “Robin functions and distortion of capacity under conformal mapping”, Complex Variables, 21 (1993), 189–196.
[13] G. V. Kuz'mina, “Ob e'kstremal'nyx svojstvax kvadratichnyx differencialov s polosoobraznymi oblastyami v strukture traektorij”, Zap. nauchn. semin. LOMI, 154, 1986, 110–129.
[14] E. G. Emel'yanov, “K zadacham ob e'kstremal'nom razbienii”, Zap. nauchn. semin. LOMI, 154, 1986, 76–89.
[15] A. Yu. Solynin, “Reshenie odnoj izoperimetricheskoj zadachi Polia – Sege”, Zap. nauchn. semin. LOMI, 168, 1988, 140–153.
[16] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lect. Notes in Math. 1788, Springer, 2002.
[17] V. N. Dubinin, L. V. Kovalev, “Privedennyj modul' kompleksnoj sfery”, Zap. nauchn. semin. POMI, 254, 1998, 76–94.

To content of the issue