Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0 (N)$ by level $N$ |
V. V. Golovchanskii, M. N. Smotrov |
2009, issue 1-2, P. 48–73 |
Abstract |
An arithmetical forms of Selberg's trace formula and Selberg's zeta-function for the congruence subgroup $\Gamma_0 (N)$, explicit expression for the number of classes of primitive hyperbolic elements in the congruence subgroup level $N$ in terms of the number of classes of primitive elements in the congruence subgroup level $N_1=N/p^i$, $(N,N_1)=1$ and sharp upper bound of the number classes by level $N$ are obtained. |
Keywords: congruence subgroup of modular group, classes of primitive hyperbolic elements, Pell's equation, Selberg's trace formula |
Download the article (PDF-file) |
References |
[1] V. V. Golovchanskij, M. N. Smotrov, “Yavnaya formula chisla klassov primitivnyx giperbolicheskix e'lementov gruppy $\Gamma_0 (N)$”, Matem. sb., 199:7 (2008), 63–84. [2] N. V. Kuznecov, “Raspredelenie norm primitivnyx giperbolicheskix klassov modulyarnoj gruppy i asimptoticheskie formuly dlya sobstvennyx znachenij operatora Laplasa – Bel'trami na fundamental'noj oblasti modulyarnoj gruppy”, DAN, 242:1 (1978), 40–43. [3] M. Peter, “The correlation between multiplicities of closed geodesics on the modular surface”, Comm. Math. Phys., 225 (2002), 171–189. [4] V. Lukianov, A central limit theorem for congruence subgroups of the modular group, Ph. D. Thesis, Tel Aviv Univ., 2005. [5] T. Arakawa, S. Koyama, M. Nakasuji, “Arithmetic foms of Selberg zeta functioms with applications to prime geodesic theorem”, Proc. Japan Acad., 78:A (2002), 120–125. [6] Y. Hashimoto, “Arithmetic expressions of Selberg's zeta functions for congruence subgroups”, J. Number Theory, 122 (2007), 324–335. [7] W. Luo, Z. Rudnick, P. Sarnak, “On Selberg's eigenvalue conjecture”, Geom. Funct. Anal., 5:2 (1995), 387–401. |