On the solvability of boundary problems for stationary Navier-Stokes equations |
A. A. Illarionov |
2001, issue 1, P. 16–36 |
Abstract |
The boundary value problems for Navier-Stokes equations describing the steady-state incompressible viscous homogeneous flow in bounded domain are considered. The boundary conditions are the boundary value of the total pressure, tangential and normal components of the flow velocity and vorticity. The unilateral boundary problems are also examined. The main aims of the paper are 1) to prove the solvability of nonhomogeneous boundary problems for any Reynold's number, 2) to prove the solvability of homogeneous boundary problems in case of the domain with piecewise smooth boundary. |
Keywords: |
Download the article (PDF-file) |
References |
[1] A. V. Kozhixov, “Razreshimost' nekotoryx kraevyx zadach dlya uravnenij Nav'e – Stoksa”, Dinamika sploshnoj sredy, № 16, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1974, 5–13. [2] V. V. Ragulin, “K zadache o protekanii vyazkoj zhidkosti skvoz' ogranichennuyu oblast' pri zadannom perepade davleniya ili napora”, Dinamika sploshnoj sredy, 27, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1976, 78–92. [3] S. N. Antoncev, A. V. Kozhixov, V. N. Monaxov, Kraevye zadachi mexaniki neodnorodnyx zhidkostej, Nauka, Novosibirsk, 1983. [4] A. Yu. Chebotarev, “Subdifferencial'nye kraevye zadachi dlya stacionarnyx uravnenij Nav'e – Stoksa”, Differenc. uravneniya, 28:8 (1992), 1443–1450. [5] A. Yu. Chebotarev, “Stacionarnye variacionnye neravenstva v modeli neodnorodnoj zhidkosti”, Sib. matem. zhurn., 38:5 (1997), 1185–1193. [6] C. Conca, F. Murat, O. Pironneau, “The Stokes and Navier – Stokes equation with boundary conditions involving the pressure”, Japan J. Math., 20:2 (1994), 279–318. [7] V. Girault, “Curl-conforming finite element methods for Navier – Stokes equations with nonstandard boundary conditions in R3”, Proc. of the Oberwolfash Meeting on Navier – Stokes Equations and Numerical Methods, Lecture Notes in Mathematics, ed. R. Rautmann, Springer, 1990, 201–218. [8] A. A. Illarionov, “O regulyarnosti reshenij kraevoj i e'kstremal'noj zadachi dlya uravnenij Nav'e – Stoksa”, Dal'nevostochnyj matematicheskij sbornik, 8, 1999, 95–109. [9] A. A. Illarionov, A. Yu. Chebotarev, “O razreshimosti smeshannoj kraevoj zadachi dlya stacionarnyx uravnenij Nav'e – Stoksa”, Differenc. uravneniya, 37:5 (2001), 689–695. [10] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoj neszhimaemoj zhidkosti, Nauka, M., 1970. [11] Zh.-L. Lions, Nekotorye metody resheniya nelinejnyx kraevyx zadach, Mir, M., 1972. [12] O. Francu, “Monotone operators”, Aplicace Matematiky, 35:4 (1990), 257–301. [13] D. Gilbarg, M. Trudinger, E'llipticheskie differencial'nye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989. [14] A. Bendali, J. M. Domingues, S. Gallic, “A Variational Approach for the Vector Potential Formulation of the Stokes and Navier – Stokes Problems in Three Dimentional Domains”, J. Math. Anal. Appl., 107 (1985), 537–560. [15] V. A. Trenogin, Funkcional'nyj analiz, Nauka, M., 1980. [16] V. P. Mixajlov, Uravneniya v chastnyx proizvodnyx, Nauka, M., 1976. [17] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Springer Verlag, New York, 1986. [18] R. Temam, Uravneniya Nav'e – Stoksa. Teoriya i chislennyj analiz, Mir, M., 1981. |