On a solution of semicoercive model problem with friction |
N. N. Kushniruk, R. V. Namm |
2008, issue 2, P. 171–179 |
Abstract |
The variational problem with friction reduced to minimization problem of differentiable functional with restriction. For solution of obtained problem the iterative proximal regularization method is used. |
Keywords: functional, variational inequality, differentiable, iterative regularization, finite element method |
Download the article (PDF-file) |
References |
[1] G. Dyuvo, Zh.-L. Lions, Neravenstva v mexanike i fizike, Mir, M., 1980. [2] R. Glovinski, Zh.-L. Lions, R. Tremol'er, Chislennoe issledovanie variacionnyx neravenstv, Mir, M., 1979. [3] A. G. Podgaev, “O teoremax edinstvennosti v zadache minimizacii odnogo nedifferenciruemogo funkcionala”, Dal'nevostochnyj matem. zhurnal, 1:1 (2000), 28–37. [4] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variacionnyx neravenstv v mexanike, Mir, M., 1986. [5] E'. M. Vixtenko, R. V. Namm, “O metode resheniya polukoe'rcitivnyx variacionnyx neravenstv, osnovannom na metode iterativnoj proksimal'noj regulyarizacii”, Izvestiya VUZov. Matematika, 2004, № 1, 31–35. [6] G. I. Marchuk, Yu. M. Agoshkov, Vvedenie v proekcionno-setochnye metody, Nauka, M., 1981. |