On uniqueness of the solution of inverse coefficient problem for the equation of reaction–convection–diffusion |
R. V. Brizitskii, E. R. Kozhushnaya |
2008, issue 2, P. 143–151 |
Abstract |
The inverse coefficient problem for the equation of reaction–convection–diffusion is considered. The sufficient conditions of the local uniqueness of the solution of this problem are deduced. |
Keywords: coefficient identification problem, optimality system, local uniqueness |
Download the article (PDF-file) |
References |
[1] A. Friedman, B. Gustafsson, “Identification of the conductivity coefficient in an elliptic equation”, SIAM J. Math. Anal., 18 (1987), 777–787. [2] R. Acar, “Identification of the coefficient in elliptic equations”, SIAM J. Control Optimization, 31:4 (1993), 146–149. [3] V. I. Gromovyk, E. G. Ivanyk, O. V. Sikora, “A method of identification of convective heat transfer coefficient”, Mat. Metody Fiz.-Mekh., 43:4 (2000), 146–149. [4] A. A. Samarskij, P. N. Vabishhevich, Chislennye metody resheniya obratnyx zadach matematicheskoj fiziki, M., 2004, 480 s. [5] P. N. Vabishhevich, “Chislennoe reshenie zadachi identifikacii mladshego koe'fficienta e'llipticheskogo uravneniya”, Differencial'nye uravneniya, 38:7 (2006), 1000–1006. [6] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 13 (1997), 995–1013. [7] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991. [8] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, “Razreshimost' kraevoj zadachi dlya stacionarnyx uravnenij teplomassoperenosa pri smeshannyx kraevyx usloviyax”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 66–80. [9] P. Grisvard, Elliptic problems in nonsmooth domains. Monograph and studies in mathematics, Pitman, London, 1985. [10] A. D. Ioffe, V. M. Tixomirov, Teoriya e'kstremal'nyx zadach, Nauka, M., 1974. [11] Zh. Sea, Optimizaciya. Teoriya i algoritmy, Mir, M., 1973. |