Far Eastern Mathematical Journal

To content of the issue


Radiation Tomography and transport equation


D. S. Anikonov, A. E. Kovtanyuk, D. S. Konovalova, V. G. Nazarov, I. V. Prokhorov, I. P. Yarovenko

2008, issue 1, P. 5–18


Abstract
Inverse problems for integro-differential radiative transfer equation with various boundary conditions have been considered in the paper. The problems are interpreted as problems of the X-ray and optical tomography. The results of the authors' investigations devoted to the problems of the attenuation coefficient determining and the equation coefficients discontinuity boundaries finding for 3D bounded domain are adduced as well as the results, concerning the problems of the refractive indices and optical thickness finding for an inhomogeneous layered medium.

Keywords:
radiation transport theory, boundary value problems, tomography

Download the article (PDF-file)

References

[1] G. I. Marchuk, G. A. Mixajlov, M. A. Nazarliev i dr., Metod Monte-Karlo v atmosfernoj optike, Nauka, Novosibirsk, 1976.
[2] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchajno-neodnorodnyx sredax, 1, № 2, Mir, M., 1981.
[3] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanij, M., 2006.
[4] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoj teorii perenosa chastic”, Trudy MIAN SSSR, 61, 1961, 3–158.
[5] O. I. Lejpunskij, B. A. Novozhilov, V. I. Saxarov, Rasprostranenie gamma-kvantov v veshhestve, GIMFL, M., 1960.
[6] U. Fano, L. Spenser, M. Berger, Perenos gamma-izlucheniya, Gosatomizdat, M., 1963.
[7] D. S. Anikonov, A. E. Kovtanyuk, I. V. Proxorov, Ispol'zovanie uravnenie perenosa v tomografii, Logos, M., 2000.
[8] D. S. Anikonov, A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht – Boston, 2002.
[9] T. A. Germogenova, Lokal'nye svojstva resheniya uravneniya perenosa, Nauka, M., 1986.
[10] I. V. Proxorov, “O razreshimosti kraevoj zadachi dlya uravneniya perenosa izlucheniya s obobshhennymi usloviyami sopryazheniya na granice razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192.
[11] F. Natterer, Matematicheskie aspekty komp'yuternoj tomografii, Mir, M., 1990.
[12] J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten”, Berichte Sachsische Akademie der Wissenschaften. Lleipzig, Math. – Phys. K.1, 69 (1917), 262–277.
[13] E. Yu. Derevtsov, V. V. Pickalov, T. Schuster, A. K. Louis, International Conference “Inverse Problems: Modeling and Simulation” (May 29 – June 02, 2006, Fethiey, Turkey), Abstracts, 2006, 38–40.
[14] M. Lassas, V. A. Sharafutdinov, G. Uhlmann, “Semiglobal boundary rigidity for Riemannian metrics”, Math. Ann., 325 (2003), 767–793.
[15] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994.
[16] A. E. Kovtanyuk, I. V. Prokhorov, “Tomography problem for the polarized-radiation transfer equation”, Journal of Inverse and Ill-Posed Problems, 14:6 (2006), 609–620.
[17] A. E. Kovtanyuk, I. V. Proxorov, “Chislennoe reshenie obratnoj zadachi dlya uravneniya perenosa polyarizovannogo izlucheniya”, Sibirskij zhurnal vychislitel'noj matematiki, 11:1 (2008), 55–68.
[18] D. S. Anikonov, “Heterogeneity indicator for medium radiography”, Abstract of Parcific International Conference (1995, August 13–20, Vladivostok), 7.
[19] D. S. Anikonov, “Integro-differential indicator in tomography problem”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 17–59.
[20] D. S. Anikonov, V. G. Nazarov and I. V. Prokhorov, Poorly Visible Media in X-ray Tomography, VSP, Utrecht – Boston, 2002.
[21] E'. I. Vajnberg, I. A. Kazak, V. P. Kurozaev, “Rekonstrukciya vnutrennej prostranstvennoj struktury ob"ektov po integral'nym proekciyam v real'nom masshtabe vremeni”, Defektoskopiya, 1981, № 6, 10–21.
[22] E'. I. Vajnberg, I. A. Kazak, M. L. Fajngojz, “Rentgenovskaya vychislitel'naya tomografiya po metodu obratnogo proecirovaniya”, Defektoskopiya, 1985, № 2, 31–39.
[23] M. M. Lavrent'ev, “Matematicheskie zadachi tomografii i giperbolicheskie otobrazheniya”, Sib. matem. zhurnal, 42:5(249) (2001), 1094–1105.
[24] I. V. Proxorov, “Opredelenie poverxnosti razdela sred po dannym tomograficheskogo prosvechivaniya”, Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki, 42:10 (2002), 1542–1555.
[25] I. V. Prokhorov , I. P. Yarovenko, and V. G. Nazarov, “Optical tomography problems at layered media”, IOP Publishing. Inverse Problems, 24:2 (2008).
[26] I. V. Proxorov, I. P. Yarovenko, “Issledovanie zadach opticheskoj tomografii metodami teorii perenosa izlucheniya”, Optika i spektroskopiya, 101:5 (2006), 817–824.
[27] I. P. Yarovenko, “Chislennoe reshenie kraevyx zadach dlya uravneniya perenosa izlucheniya v opticheskom diapazone”, Vychislitel'nye metody i programmirovanie, 7 (2006), 93–104.

To content of the issue