Solvability of nonlinear heat equation in class of unbounded functions with degeneration of coefficient near derivative with respect to time |
E. G. Agapova |
2007, issue 1-2, P. 3–16 |
Abstract |
In this paper, we consider quasilinear parabolic equations which degenerate on a solution due to a multiplier of the derivative with respect to time. In the many-dimensional case, we prove the existence of a solution of a general boundary-value problem from a class of unbounded functions. Restrictions to nonlinearity of the multiplier of the derivative with respect to time are different from ones considered before by other authors. |
Keywords: nonlinear heat equation, quasilinear parabolic equations, unbounded functions, degenerate on a solution, a general boundary-value problem, class of unbounded functions, nonlinearity of the multiplier of the derivative with respect to time |
Download the article (PDF-file) |
References |
[1] E. G. Agapova, A. G. Podgaev, “Issledovanie razreshimosti e'volyucionnogo vyrozhdayushhegosya uravneniya s neodnorodnoj nelinejnost'yu metodom kompaktnosti”, Differenc. Uravneniya, 35:6 (1999), 772–779. [2] P. A. Raviart, “Sur la resolution de certaines equations paraboliques non lineares”, J. Funct. Anal., 5 (1970), 299–328. [3] O. V. Gorevchuk, “Kraevaya zadacha dlya odnogo klassa nelinejnyx vyrozhdayushhixsya parabolicheskix uravnenij”, Sib. mat. zhurn., 38:6 (1997), 1222–1239. [4] A. V. Ivanov, “Kvazilinejnye parabolicheskie uravneniya, dopuskayushhie dvojnoe vyrozhdenie”, Algebra i analiz, 4:6 (1992), 114–130. [5] A. S. Kalashnikov, “Nekotorye voprosy kachestvennoj teorii nelinejnyx vyrozhdayushhixsya parabolicheskix uravnenij vtorogo poryadka”, UMN, 42:2 (1987), 135–176. [6] G. I. Laptev, “Slabye resheniya kvazilinejnyx parabolicheskix uravnenij vtorogo poryadka s dvojnoj nelinejnost'yu”, Mat. sb., 188:9 (1997), 83–112. [7] R. Suzuki, “Boundedness of global solutions of one dimensional quasilinear degenerate parabolic equations”, J. Math. Soc. Jap., 50:1 (1998), 119–138. [8] A. G. Podgaev, “O granichnyx zadachax dlya nekotoryx kvazilinejnyx parabolicheskix uravnenij s neklassicheskimi vyrozhdeniyami”, Sib. mat. zhurn., 28:2 (1987), 129–139. [9] J. Carrillo, “Entropy solutions for nonlinear degenerate problems”, Arch. Rational Mech. Anal., 147 (1999), 269–361. [10] A. V. Ivanov, P. Z. Mkrtchyan, V. Yaeger, “Sushhestvovanie i edinstvennost' regulyarnogo resheniya pervoj nachal'no-kraevoj zadachi dlya nekotorogo klassa dvazhdy nelinejnyx parabolicheskix uravnenij”, Zap. nauch. seminarov POMI, 213, 1994, 48–65. [11] J.-B. Betbeder, “Etude d,une equation non lineaire d,evolution de type divergentiel”, Commun. Part. Differ. Equat., 19:7–8 (1994), 1019–1035. [12] D. Eidus, “The Cauchy problem for the non-linear filtration equation in an inhomogeneous medium”, J. diff. eq., 84 (1990), 309–318. [13] H. Kazuya, Y. Takaaki, “An ill-posed estimate of positive solutions of a degenerate nonlinear parabolic equation”, Tokyo J. Math., 19:2 (1996), 331–352. [14] P. Urruty, “Sur une equation autonome d'evolution doublement non lineaire et degeneree”, C. r. Acad. sci. ser. 1, 322:8 (1996), 741–744. [15] S. N. Glazatov, “O nekotoryx zadachax dlya dvazhdy nelinejnyx parabolicheskix uravnenij i uravnenij peremennogo tipa”, Matematicheskie trudy, 3:2 (2000), 71–110. [16] O. A. Ladyzhenskaya, V. A. Solonnikova, N. N. Ural'ceva, Linejnye i kvazilinejnye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 s. [17] A. G. Podgaev, “Kompaktnost' nekotoryx nelinejnyx mnozhestv”, Dokl. AN SSSR, 285:5 (1985), 1064–1066. [18] Y. Y. Li, M. Zhu, “Sharp Sobolev inequalities involving boundary terms”, Geometric and functional analysis, 8 (1998), 59–87. [19] D. Gilbarg, N. Trudinger, E'llipticheskie differencial'nye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 s. [20] A. N. Kolmogorov, S. V. Fomin, E'lementy teorii funkcij i funkcional'nogo analiza, M., 1981, 624 s. [21] Zh.-L. Lions, Nekotorye metody resheniya nelinejnyx kraevyx zadach, Mir, M., 1972, 588 s. |