Numerical analysis of the inverse identification problem for the lower coefficient of an elliptic equation |
E. A. Kalinina |
2005, issue 1-2, P. 57–70 |
Abstract |
In this paper the inverse problem of identification of a coefficient in the two-dimensional stationary equation of diffusion – reaction is considered. For the solution of this problem the numerical algorithm is developed which is based on the two-layer gradient algorithm. Theoretical aspects and the convergence of the algorithm are discussed. The results of numerical experiments are analyzed in details. |
Keywords: elliptic equation, inverse extremal problem, coefficient identification, gradient algorithm, pollutant transfer |
Download the article (PDF-file) |
References |
[1] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa”, Dokl. RAN, 375:3 (2000), 315–319. [2] C. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468. [3] G. V. Alekseev, E'. A. Adomavichyus, “Issledovanie obratnyx e'kstremal'nyx zadach dlya nelinejnyx stacionarnyx uravnenij perenosa veshhestva”, Dal'nevost. mat. zhurn., 3:1 (2002), 79–92. [4] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394. [5] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991. [6] A. N. Tixonov, V. Ya. Arsenin, Metody resheniya nekorrektnyx zadach, Nauka, M., 1979. [7] A. G. Fatullayev, “Determination of unknown coefficient in nonlinear diffusion equation”, Nonlinear Analysis, 44 (2001), 337–344. [8] A. G. Fatullayev, “Numerical procedure for the determination of an unknown coefficients in parabolic equations”, Comp. Phys. Comm., 144 (2002), 29–33. [9] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 13 (1997), 995–1013. [10] A. Shidfar, K. Tavakoli, “An inverse heat conduction problem”, South. Asian Bull. Math., 26 (2002), 503–507. [11] M. Dehghan, “Finding a control parameter in one-dimensional parabolic equations”, Appl. Math. Comp., 135 (2003), 491–503. [12] A. A. Samarskij, P. N. Vabishhevich, Chislennye metody resheniya obratnyx zadach matematicheskoj fiziki, Moskva, 2004, 480 s. [13] B. Lowe, W. Rundell, “The determination of a coefficient in an elliptic equation from average flux data”, J. Comput. Math., 70 (1996), 173–187. [14] D. A. Tereshko, “Chislennoe reshenie zadach identifikacii parametrov primesi dlya stacionarnyx uravnenij massoperenosa”, Vych. texn., 9:4, Spec. vyp. (2004), 92–98. [15] A. Capatina, R. Stavre, “Numerical analysis of a control problem in heat conducting Navier – Stokes fluid”, Int. J. Eng. Sci., 34:13 (1996), 1467–1476. [16] A. D. Ioffe, V. M. Tixomirov, Teoriya e'kstremal'nyx zadach, Nauka, M., 1974, 480 s. [17] V. A. Trenogin, Funkcional'nyj analiz, Nauka, M., 1980, 496 s. |