Study of spectral properties of a translation operator |
V. I. Zhukova, L. N. Gamolja |
2004, issue 1, P. 158–164 |
Abstract |
The resolvent for a translation operator is constructed. The evaluation of its norm is obtained. From an evaluation follows, that the translation operator is a yielding operator strongly of continuous group of operators. |
Keywords: translation operator, closure, resolvent, spectrum |
Download the article (PDF-file) |
References |
[1] J. Lehner, G. Wing, “On the spectrum of an unsymmetric operator arising in the transport theory of neutrons”, Comm. Pure Appl. Math., 8 (1955), 217–234. [2] J. Lehner, G. Wing, “Solution of the linearized Boltzmann equation for the slab geometry”, Duke Math. J., 23 (1956), 125–142. [3] Dzh. M. Ving, “Kineticheskaya teoriya i spektral'nye problemy”, Teoriya yadernyx reaktorov, red. G. Birkxof, E'. Vigner, M., 1963, 160. [4] K. Jorgens, “An Asimptotic expansion in the theory of neutron transport”, Comm. Pure Appl. Math., 11 (1958), 219. [5] S. B. Shixov, “Nekotorye voprosy matematicheskoj teorii kriticheskogo sostoyaniya reaktora”, Zh. vychisl. matematiki i matem. fiz., 7:1 (1967), 113–127. [6] S. B. Shixov, Voprosy matematicheskoj teorii reaktorov. Linejnyj analiz, Atomizdat, M., 1973, 375 s. [7] J. Lehner, “The spectrum of neutron transport operator for the infinite slab”, J. Math. Mech., 11:2 (1962), 173–181. [8] V. I. Zhukova, “Issledovaniya spektral'nyx svojstv operatora perenosa”, Sbornik trudov nauchno-prakticheskoj konferencii DVGUPS, t. 2, Xabarovsk, 1997, 180–181 s. [9] Yu. A. Kuperin, S. N. Naboko, R. V. Romanov, “Spektral'nyj analiz odnoskorostnogo operatora perenosa i funkcional'naya model'”, Funkcional'nyj analiz i ego prilozheniya, 33:3 (1999), 47–58. [10] V. I. Zhukova, “Spektral'nye svojstva operatora perenosa”, Trudy vserossijskoj nauchno-prakticheskoj konferencii, t. 5, Chita, 2000, 170–174. [11] E'. Xille, R. Fillips, Funkcional'nyj analiz i polugruppy, IL, M., 1962, 829 s. [12] K. Iosida, Funkcional'nyj analiz, Mir, M., 1967, 624 s. |