Far Eastern Mathematical Journal

To content of the issue


Geometrical and kinematics restriction on functions discontinuities on moving surfaces


E. A. Gerasimenko, V. E. Ragozina

2004, issue 1, P. 100–109


Abstract
In case when a motion of uninterrupted medium is defined for a curvilinear coordinate system, recurrence relations connecting derivative discontinuities of any order on moving surfaces of discontinuity are received.

Keywords:

Download the article (PDF-file)

References

[1] T. Tomas, Plasticheskoe techenie i razrushenie v tverdyx telax, Mir, M., 1964, 308 s.
[2] G. I. Bykovcev, D. D. Ivlev, Teoriya plastichnosti, Dal'nauka, Vladivostok, 1998, 528 s.
[3] L. A. Babicheva, G. I. Bykovcev, N. D. Vervejko, “Luchevoj metod resheniya dinamicheskix zadach v uprugo–vyazko–plasticheskix sredax”, Prikladnaya matematika i mexanika, 37:1 (1973), 145–155.
[4] G. I. Bykovcev, I. A. Vlasova, “Osobye linii i poverxnosti v prostranstvennyx techeniyax ideal'nyx zhestko-plasticheskix sred”, Mex. deform. tv. t. (dinamika sploshnoj sredy), 41 (1979), 31–43, Novosibirsk.
[5] A. P. Bestuzheva, G. I. Bykovcev, V. N. Durova, “K issledovaniyu nestacionarnyx poverxnostnyx voln v nelinejno–uprugix sredax”, Prikl. mexanika, 17:12 (1981), 27–33.
[6] A. G. Shatalov, “Razryvnye resheniya v svyazannoj zadache termouprugosti”, Mexanika deform. sred, Kujbyshevskij un-t, 1979, 85–90 s.
[7] “A Ray solving boundary–value problem connected with the propagation of finite amplitude waves”, Nonlinear theory and its applications, Int. Simp., Hawaii, 1993.
[8] A. A. Burenin, “Ob odnoj vozmozhnosti postroeniya priblizhennyx reshenij nestacionarnyx zadach dinamiki uprugix sred pri udarnyx vozdejstviyax”, Dal'nevostochnyj mat. sbornik, 8 (1999), 49–72.
[9] M. A. Grinfil'd, Metody mexaniki sploshnyx sred v teorii fazovyx prevrashhenij, Nauka, M., 1990, 312 s.
[10] A. A. Burenin, P. V. Zinov'ev, V. E. Ragozina, “Ob odnoj vozmozhnosti algoritmicheskogo vydeleniya poverxnostej razryvov v raschetax udarnogo deformirovaniya”, Sbornik dokladov, Vseros. shkola–seminar po sovremennym problemam mexaniki deformiruemogo tverdogo tela, NGTU, Novosibirsk, 2003, 33–36.
[11] A. A. Burenin, P. V. Zinov'ev, “K probleme vydeleniya poverxnostej razryvov v chislennyx metodax dinamiki deformiruemyx sred”, Problemy mexaniki, Sbornik statej k 90–letiyu A. Yu. Ishlinskogo, Fizmatlit, M., 2003, 146–155 s.
[12] A. Dzh. Mak-Konnel, Vvedenie v tenzornyj analiz s prilozheniyami k geometrii, mexanike i fizike, Gos. izdatel'stvo fiziko-matematicheskoj literatury, M., 1963, 411 s.
[13] Yu. A. Rossikhin, M. V. Shitikova, “Ray method for solving dynamic problems connected with propagation of wave surfaces of strong and weak discontinuities”, Appl. mech. Rev., 48:1 (1995), 1–39.

To content of the issue