Geometrical and kinematics restriction on functions discontinuities on moving surfaces |
E. A. Gerasimenko, V. E. Ragozina |
2004, issue 1, P. 100–109 |
Abstract |
In case when a motion of uninterrupted medium is defined for a curvilinear coordinate system, recurrence relations connecting derivative discontinuities of any order on moving surfaces of discontinuity are received. |
Keywords: |
Download the article (PDF-file) |
References |
[1] T. Tomas, Plasticheskoe techenie i razrushenie v tverdyx telax, Mir, M., 1964, 308 s. [2] G. I. Bykovcev, D. D. Ivlev, Teoriya plastichnosti, Dal'nauka, Vladivostok, 1998, 528 s. [3] L. A. Babicheva, G. I. Bykovcev, N. D. Vervejko, “Luchevoj metod resheniya dinamicheskix zadach v uprugo–vyazko–plasticheskix sredax”, Prikladnaya matematika i mexanika, 37:1 (1973), 145–155. [4] G. I. Bykovcev, I. A. Vlasova, “Osobye linii i poverxnosti v prostranstvennyx techeniyax ideal'nyx zhestko-plasticheskix sred”, Mex. deform. tv. t. (dinamika sploshnoj sredy), 41 (1979), 31–43, Novosibirsk. [5] A. P. Bestuzheva, G. I. Bykovcev, V. N. Durova, “K issledovaniyu nestacionarnyx poverxnostnyx voln v nelinejno–uprugix sredax”, Prikl. mexanika, 17:12 (1981), 27–33. [6] A. G. Shatalov, “Razryvnye resheniya v svyazannoj zadache termouprugosti”, Mexanika deform. sred, Kujbyshevskij un-t, 1979, 85–90 s. [7] “A Ray solving boundary–value problem connected with the propagation of finite amplitude waves”, Nonlinear theory and its applications, Int. Simp., Hawaii, 1993. [8] A. A. Burenin, “Ob odnoj vozmozhnosti postroeniya priblizhennyx reshenij nestacionarnyx zadach dinamiki uprugix sred pri udarnyx vozdejstviyax”, Dal'nevostochnyj mat. sbornik, 8 (1999), 49–72. [9] M. A. Grinfil'd, Metody mexaniki sploshnyx sred v teorii fazovyx prevrashhenij, Nauka, M., 1990, 312 s. [10] A. A. Burenin, P. V. Zinov'ev, V. E. Ragozina, “Ob odnoj vozmozhnosti algoritmicheskogo vydeleniya poverxnostej razryvov v raschetax udarnogo deformirovaniya”, Sbornik dokladov, Vseros. shkola–seminar po sovremennym problemam mexaniki deformiruemogo tverdogo tela, NGTU, Novosibirsk, 2003, 33–36. [11] A. A. Burenin, P. V. Zinov'ev, “K probleme vydeleniya poverxnostej razryvov v chislennyx metodax dinamiki deformiruemyx sred”, Problemy mexaniki, Sbornik statej k 90–letiyu A. Yu. Ishlinskogo, Fizmatlit, M., 2003, 146–155 s. [12] A. Dzh. Mak-Konnel, Vvedenie v tenzornyj analiz s prilozheniyami k geometrii, mexanike i fizike, Gos. izdatel'stvo fiziko-matematicheskoj literatury, M., 1963, 411 s. [13] Yu. A. Rossikhin, M. V. Shitikova, “Ray method for solving dynamic problems connected with propagation of wave surfaces of strong and weak discontinuities”, Appl. mech. Rev., 48:1 (1995), 1–39. |