Far Eastern Mathematical Journal

To content of the issue


Numerical study of inverse problem of identification of source density for the two-dimensional non-stationary convection-diffusion equation


E. A. Kalinina

2004, issue 1, P. 89–99


Abstract
In this paper the inverse problem of reconstructing of temporary component of the right-hand side for the two-dimensional non-stationary convection-diffusion equation is considered. For the solution of this problem the numerical algorithm is developed which is based on the reduction of the initial problem to the auxiliary problem for the loaded parabolic equation. Computational aspects of the solution of these problems are discussed.

Keywords:
convection-diffusion equation, inverse problem, reconstructing unknown densities, pollutant transfer

Download the article (PDF-file)

References

[1] O. M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994.
[2] J. V. Besk, B. Blackwell, C. St. Clair, Inverse Conduction Ill-posed Problems, Wiley, New York, 1985.
[3] A. A. Samarskii, P. N. Vabishchevich, Computational Heat Transfer, Wiley, Chichester, 1995.
[4] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa”, Zh. vychisl. mat. matem. fiz., 42:3 (2002), 380–394.
[5] G. V. Alekseev, “Razreshimost' stacionarnyx zadach granichnogo upravleniya dlya uravnenij teplovoj konvekcii”, Sib. mat. zhurn., 39:5 (1998), 982–998.
[6] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa”, Dokl. RAN, 375:3 (2000), 315–319.
[7] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenos”, Sib. mat. zhurn., 42:5 (2001), 971–991.
[8] C. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468.
[9] G. V. Alekseev, E'. A. Adomavichyus, “O razreshimosti neodnorodnyx kraevyx zadach dlya stacionarnyx uravnenij massoperenosa”, DV mat. zhurn., 2:2 (2001), 138–153.
[10] G. V. Alekseev, E'. A. Adomavichyus, “Issledovanie obratnyx e'kstremal'nyx zadach dlya nelinejnyx stacionarnyx uravnenij perenosa veshhestva”, DV mat. zhurn., 3:1 (2002), 79–92.
[11] A. N. Tixonov, V. Ya. Arsenin, Metody resheniya nekorrektnyx zadach, Nauka, M., 1979.
[12] A. A. Samarskij, P. N. Vabishhevich, “Differencial'nye metody resheniya zadach identifikacii obnaruzheniya istochnikov parabolicheskix uravnenij”, Vestnik MGU, Matematika i kibernetika, № 1, 1995, 47–56.
[13] Yu. A. Kriksin, S. N. Plyushhev, E. A. Samarskaya, V. F. Tishkin, “Obratnaya zadacha vosstanovleniya istochnika dlya uravneniya konvektivnoj diffuzii”, Matemat. Modelirovanie, 7:11 (1995), 95–108.
[14] V. T. Boruxov, “Inversiya linejnogo invarianta dinamicheskix sistem vo vremeni s raspredelennymi parametrami”, Atomatika i telemexanika, 1982, № 5, 29–36.
[15] A. V. Kryazhimskij, V. I. Maksimov, Yu. S. Osipov, “O pozicionnom modelirovanii v dinamicheskix sistemax”, Prikladnaya matematika i mexanika, 47:6 (1982), 883–889.
[16] V. T. Borukhov, P. N. Vabishchevich, “Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation”, Computer Physics Communications, 126:1 (2000), 32–36.
[17] Yu. A. Kriksin, S. N. Plyushhev, E. A. Samarskaya, V. F. Tishkin, K voprosu o edinstvennosti resheniya obratnoj zadachi konvektivnoj diffuzii, Preprint In-ta matematicheskogo modelirovaniya RAN № 23, M., 1994.
[18] P. M. Kolesnikov, V. T. Boruxov, L. E. Borisevich, “Metod obratnyx dinamicheskix sistem dlya vosstanovleniya vnutrennix istochnikov i granichnyx uslovij v teorii perenosa”, IFZh, 55:2 (1988), 304–311.
[19] A. M. Naxushev, “Nagruzhennye uravneniya i ix prilozheniya”, Differencial'nye uravneniya, 19:1 (1983), 86–94.
[20] A. A. Samarskij, P. N. Vabishhevich, Additivnye sxemy dlya zadach matematicheskoj fiziki, Nauka, M., 1999.

To content of the issue