Задача о разделении переменных

В работе приведен критерий допустимости разделения переменных для голоморфной функции двух переменных.

Ключевые слова: разделение переменных, голоморфная функция.

DOI: https://doi.org/10.47910/FEMJ202023

В работах [1–12] рассматривались функциональные уравнения

\[f(z_1 + z_2) \cdot \varphi(z_1 - z_2) = a_1(z_1) b_1(z_2) + \ldots + a_m(z_1) b_m(z_2), \]
\[f(z_1 + z_3) \cdot \varphi(z_2 + z_3) \cdot \psi(z_1 + z_2 - z_3) = a_1(z_1, z_2) b_1(z_3) + \ldots + a_m(z_1, z_2) b_m(z_3). \]

В данной работе решается вопрос об условиях представимости голоморфной функции двух переменных в виде

\[f(z_1, z_2) = a_1(z_1) \cdot b_1(z_2) + \ldots + a_m(z_1) \cdot b_m(z_2), \]

где \(a_s(z_1), b_s(z_2) \) — голоморфные функции.

Введем обозначения: \(k = (k_1, \ldots, k_n) \) — целочисленный вектор с неотрицательными координатами, \(|k| = k_1 + k_2 + \ldots + k_n, \)

\[\frac{\partial^{|k|} f}{\partial^{k_1} z_1 \ldots \partial^{k_n} z_n}: = D_{k_1,...,k_n} f. \]

Если функция \(a: \mathbb{C} \to \mathbb{C} \), то применяем стандартное обозначение

\[a^{(k)} = \frac{d^k a}{dz^k}. \]

Для функций \(a_s = a_s(z_1), b_s = b_s(z_2), s = 1, m \) введем обозначения

\[a = (a_1, \ldots, a_m), \quad b = (b_1, \ldots, b_m), \quad a \cdot b = a_1 b_1 + \ldots + a_m b_m, \]
\[a^{(k)} \cdot b = a^{(k)}_1 b_1 + \ldots + a^{(k)}_m b_m, \quad a \cdot b^{(k)} = a_1 b^{(k)}_1 + \ldots + a_m b^{(k)}_m. \]

© В. Я. Прудников

1 Тихоокеанский государственный университет, 680035, г. Хабаровск, ул. Тихоокеанская, 136. Электронная почта: prudnickov.vit@yandex.ru
обозначим определитель Грама

$$\det(a_s^{(k)}(z_1))_{m \times m} = W(a)(z_1), \quad \det(b_s^{(k)}(z_2))_{m \times m} = W(b)(z_2).$$

$$W((z_2 \to a^{(k)}(z_1) \cdot b(z_2))^{1 - m}) = W((z_1 \to a^{(k)}(z_1) \cdot b^{(k)}(z_2))^{1 - m}).$$

Считаем, что в определителе $\det(D_{i,j}f)_{m \times m}$ индексы $i, j = 0, m - 1$.

Для голоморфных функций $f, \varphi: \omega \to \mathbb{C}$, $\omega \subset \mathbb{C}^2$ полагаем

$$(f, \varphi)_{\omega} = \int_{\omega} f \cdot \varphi \, d\omega.$$

Если $\{f_i\}_{i=1}^{m}$ — некоторая система голоморфных функций, то через $\Gamma (f_1, \ldots, f_m)_{\omega}$ обозначим определитель Грама

$$\Gamma (f_1, \ldots, f_m)_{\omega} = \begin{vmatrix} (f_1, f_1)_{\omega} & (f_1, f_2)_{\omega} & \ldots & (f_1, f_m)_{\omega} \\ (f_2, f_1)_{\omega} & (f_2, f_2)_{\omega} & \ldots & (f_2, f_m)_{\omega} \\ \vdots & \vdots & \ddots & \vdots \\ (f_m, f_1)_{\omega} & (f_m, f_2)_{\omega} & \ldots & (f_m, f_m)_{\omega} \end{vmatrix}.$$

Известно, что условие $\Gamma (f_1, \ldots, f_m)_{\omega} = 0$ необходимо и достаточно для линейной зависимости системы функций $\{f_i\}_{i=1}^{m}$ на множестве ω.

Лемма 1. $W(a)(z_1) \cdot W(b)(z_2) = W((z_2 \to a^{(k)}(z_1) \cdot b(z_2))^{1 - m}).$

Доказательство. Так как

$$(a^{(k)}(z_1) \cdot (b^{(k)})^T_{m \times m} = (a^{(k)}) \cdot (b^{(k)})_{m \times m}$$ и $\det((b^{(k)}(z_2))^T_{m \times m}) = W(b)(z_2),$$

то из равенства

$$\det(a^{(k)})_{m \times m} \cdot \det(b^{(k)})^T_{m \times m} = \det(a^{(k)})_{m \times m}$$

следует $W(a)(z_1) \cdot W(b)(z_2) = W((z_2 \to a^{(k)}(z_1) \cdot b(z_2))^{1 - m}).$

Обозначим через $P_2(\Omega)$ множество всех $z_k(k=1,2)$ таких, что точки (z_1, z_2) принадлежат области Ω. Введем обозначения дифференциальных операторов

$$L^m[/u](z_1) = \sum_{k=0}^{m} p_k(z_1) \frac{d^k u}{dz_1^k}, \quad L^m[/u](z_2) = \sum_{k=0}^{m} q_k(z_2) \frac{d^k u}{dz_2^k},$$

где $p_k(z_1), q_k(z_2)$ — некоторые голоморфные функции, $p_m(z_1) \neq 0, q_m(z_2) \neq 0$.

Теорема 1. Для представления голоморфной функции $f(z_1, z_2)$ в области $\Omega \subset \mathbb{C}^2$ в виде

$$f(z_1, z_2) = a_1(z_1) \cdot b_1(z_2) + \ldots + a_m(z_1) \cdot b_m(z_2), \quad W(a)(z_1) \cdot W(b)(z_2) \neq 0,$$

необходимо и достаточно выполнение хотя бы одного из условий:

1) функция $z_1 \to f(z_1, z_2)$ для любого $z_2 \in P_2(\Omega)$ — решение некоторого уравнения $L^m[/u](z_1) = 0$, $W((z_1 \to D_{0,k}f(z_1, z_2))^{1 - m}) \neq 0$, $(z_1, z_2) \in \Omega$;

2) функция $z_2 \to f(z_1, z_2)$ для любого $z_1 \in P_1(\Omega)$ — решение некоторого уравнения $L^m[/u](z_2) = 0$, $W((z_2 \to D_{k,0}f(z_1, z_2))^{1 - m}) \neq 0$, $(z_1, z_2) \in \Omega$.

В. Я. Прудников
Доказательство. Необходимость. Пусть
\[f(z_1, z_2) = \sum_{s=1}^{m} a_s(z_1) \cdot b_s(z_2), \quad W(a)(z_1) \cdot W(b)(z_2) \neq 0. \] (1)

Доказываем условие 1) теоремы. Так как \(W(a)(z_1) \neq 0, z_1 \in P_1(\Omega), \) то система функций \(\{a_s\}_{s=1}^{m} \) будет фундаментальной для некоторого однородного дифференциального уравнения \(m \)-го порядка (см., например, [13])

\[
L_1^m[u](z_1) = \sum_{k=0}^{m} p_k(z_1) \frac{d^k u}{dz_1^k} = 0, \quad z_1 \in P_1(\Omega).
\]

Поэтому из (1) для любых \((z_1, z_2) \in \Omega \) следует

\[
L_1^m[f(\cdot, z_2)](z_1) = \sum_{s=1}^{m} L_1^m[a_s](z_1) \cdot b_s(z_2) = 0,
\]

а из леммы получим

\[
W(\{z_1 \rightarrow D_{0,k}f(z_1, z_2)\}_{k=0}^{m-1}) \neq 0, \quad (z_1, z_2) \in \Omega.
\]

Достаточность. Пусть, например, выполнено условие 1). Тогда

\[
f(z_1, z_2) = a_1(z_1) \cdot b_1(z_2) + \ldots + a_m(z_1) \cdot b_m(z_2),
\]

где \(\{a_s(z_1)\}_{s=1}^{m} \) — фундаментальная система решений уравнения \(L_1^m[u](z_1) = 0, \) поэтому \(W(a) \neq 0. \) Для системы функций \(\{b_s(z_1)\}_{s=1}^{m} \) также \(W(b) \neq 0. \) В самом деле, так как \(W(a) \neq 0, \) то из системы уравнений

\[
\sum_{s=1}^{m} a_s^{(k)}(z_1) \cdot b_s(z_2) = D_{k,0}f(z_1, z_2), \quad k = 0, m - 1
\]

следует голоморфность функций \(b_s(z_2), \) а из леммы — условие \(W(b) \neq 0. \) \(\square \)

Теорема 2. Для представления голоморфной функции \(f(z_1, z_2) \) в области \(\Omega \subset \mathbb{C}^2 \) в виде

\[
f(z_1, z_2) = a_1(z_1) \cdot b_1(z_2) + \ldots + a_m(z_1) \cdot b_m(z_2), \quad W(a)(z_1) \cdot W(b)(z_2) \neq 0
\]
необходимо и достаточно выполнение условий

\[
det(D_{i,j}f)_{m \times m} \neq 0 \text{ в } \Omega, \quad \Gamma(z_2 \rightarrow D_{0,0}f(z_1, z_2), \ldots, z_2 \rightarrow D_{m,0}f(z_1, z_2))_{P_2(B)} = 0,
\]

где \(B \) — окрестность некоторой точки из \(\Omega. \)

Доказательство. Необходимость. Из теоремы 1 следует, что в \(\Omega \)

\[
det(D_{i,j}f)_{m \times m} \neq 0.
\]
Фиксируем точку \((z_1^0, z_2^0)\) из \(\Omega\) и некоторую ее окрестность \(B \subset \Omega\). Согласно теореме 1 функция \(z_1 \to f(z_1, z_2)\) — решение уравнения \(L^n_m|u|(z_1) = 0\), поэтому для каждого \(z_1 \in P_1(\Omega)\) система функций \(\{z_2 \to D_{k,0}f(z_1, z_2)\}\) \(m\)-линейная зависимость в \(P_2(B)\), но тогда \(\Gamma(\{z_2 \to D_{0,0}f(z_1, z_2), \ldots, z_2 \to D_{m,0}f(z_1, z_2)\})_{P_2(B)} = 0\), \(z_1 \in P_1(\Omega)\).

Достаточность. Из равенства \(\Gamma(\{z_2 \to D_{0,0}f(z_1, z_2), \ldots, z_2 \to D_{m,0}f(z_1, z_2)\})_{P_2(B)} = 0\), \(B \subset \Omega\) следует для каждого \(z_1 \in P_1(\Omega)\) линейная зависимость в \(P_2(B)\) системы функций \(\{z_2 \to D_{k,0}f(z_1, z_2)\}\):

\[
\sum_{k=0}^{m} p_k(z_1) \cdot D_{k,0}f(z_1, z_2) = 0, \quad z_1 \in P_1(\Omega), z_2 \in P_2(B).
\]

Покажем, что \(p_m(z_1) \neq 0\) для каждого \(z_1 \in P_1(\Omega)\). Пусть существует такое \(z_1\), что \(p_m(z_1) = 0\). Тогда из (2) получим

\[
\sum_{k=0}^{m-1} p_k(z_1) \cdot D_{k,0}f(z_1, z_2) = 0,
\]

а так как условие \(W(\{z_2 \to D_{k,0}f(z_1, z_2)\}\) \(m\times m \neq 0\) следует линейная независимость системы функций \(\{z_2 \to D_{k,0}f(z_1, z_2)\}\), то \(p_k(z_1) = 0\), \(k = 1, 2, \ldots, m = 1, m - 1\), что противоречит линейной зависимости системы \(\{z_2 \to D_{k,0}f(z_1, z_2)\}\) \(m\).

Таким образом, получим \(p_m(z_1) \neq 0\) для всех \(z_1 \in P_1(\Omega)\).

Разделим (2) на \(p_m(z_1)\) и переобозначив \(\frac{p_k(z_1)}{p_m(z_1)}\) на \(p_k(z_1)\), \(k = 1, m - 1\), получим

\[
\sum_{k=0}^{m-1} p_k(z_1) \cdot D_{k,0}f(z_1, z_2) = -D_{m,0}f(z_1, z_2), \quad z_1 \in P_1(\Omega), z_2 \in P_2(B).
\]

Так как \(\det(D_{i,j}f(z_1, z_2))_{m \times m} \neq 0\), то из системы

\[
\sum_{k=0}^{m-1} p_k(z_1) \cdot D_{k,s}f(z_1, z_2) = -D_{m,s}f(z_1, z_2), \quad z_1 \in P_1(\Omega), z_2 \in P_2(B), s = 0, m - 1,
\]

следует голоморфность функций \(p_k(z_1), k = 1, m - 1\). Но тогда голоморфная функция

\[
(z_1, z_2) \to D_{m,0}f(z_1, z_2) + \sum_{k=0}^{m-1} p_k(z_1) \cdot D_{k,0}f(z_1, z_2)
\]

tождественно равна нулю в \(B\), поэтому из теоремы единственности [14] следует, что во всей области \(\Omega\)

\[
D_{m,0}f(z_1, z_2) + \sum_{k=0}^{m-1} p_k(z_1) \cdot D_{k,0}f(z_1, z_2) = 0,
\]

то есть функция \(z_1 \to f(z_1, z_2)\) для любого \(z_2 \in P_2(\Omega)\) является решением уравнения

\[
\frac{d^m u}{dz_1^m} + \sum_{k=0}^{m-1} p_k(z_1) \frac{d^k u}{dz_1^k} = 0, \quad z_1 \in P_1(\Omega),
\]
а так как \(W(\{z_1 \mapsto D_{0,k}f(z_1, z_2)\}_{k=1}^{m-1}) \neq 0 \), то по теореме 1 для функции \(f(z_1, z_2) \) в области \(\Omega \) справедливо представление

\[
 f(z_1, z_2) = a_1(z_1) \cdot b_1(z_2) + \ldots + a_m(z_1) \cdot b_m(z_2), \quad W(a)(z_1) \cdot W(b)(z_2) \neq 0.
\]

\[\square\]

Замечание. При выполнении условий

\[
det(D_{i,j}f)_{m \times m} \neq 0 \text{ в } \Omega, \quad \Gamma(D_{0,0},\ldots,D_{m,0}) = 0,
\]

где \(B \) — окрестность некоторой точки из \(\Omega \), функция \(z_1 \mapsto f(z_1, z_2) \) есть решение уравнения

\[
 \frac{d^m u}{dz_1^m} + p_{m-1} \frac{d^{m-1} u}{dz_1^{m-1}} + \ldots + p_0 u = 0,
\]

где \(p_{m-1},\ldots,p_0 \) — константы. В самом деле, из условия

\[
 \Gamma(D_{0,0},\ldots,D_{m,0}) = 0
\]

следует существование таких констант \(p_k, k = 0, m \), что \(|p_0| + \ldots + |p_m| \neq 0, \)

\[
 \sum_{k=0}^{m} p_k \cdot D_{k,0}f(z_1, z_2) = 0, \quad (z_1, z_2) \in B.
\]

Далее проводим рассуждения такие же, как в доказательстве теоремы 2.

Теорема 3. Пусть функция \(f(z_1, z_2) \) голоморфна в области \(\Omega \subset \mathbb{C}^2 \), точка \((z_1^0, z_2^0) \in \Omega\). Для представления \(f(z_1, z_2) \) и виде

\[
 f(z_1, z_2) = a_1(z_1) \cdot b_1(z_2) + \ldots + a_m(z_1) \cdot b_m(z_2), \quad W(a)(z_1) \cdot W(b)(z_2) \neq 0,
\]

необходимо и достаточно выполнение условий:

1) \(\det(D_{i,j}f)_{m \times m} \neq 0 \) в \(\Omega \);

2) \(f(z_1, z_2) = \sum_{j=1}^{m} D_{0,j-1}f(z_1, z_2) \cdot c_j(z_2) \), где голоморфные функции \(c_j(z_2) \) образуют единственное решение системы

\[
 \sum_{j=1}^{m} D_{i-1,j-1}f(z_1^0, z_2^0) \cdot c_j(z_2) = D_{i-1,0}f(z_1^0, z_2), \quad i = 1, m.
\]

Доказательство. Необходимость. Согласно теореме 2 функция \(z_1 \mapsto f(z_1, z_2) \) для любого \(z_2 \in P_2(\Omega) \) является решением некоторого уравнения

\[
 \sum_{i=0}^{m} p_i(z_1) \frac{d^i u}{dz_1^i} = 0, \quad p_m(z_1) \neq 0, \quad \det(D_{i,j}f)_{m \times m} \neq 0 \text{ в } \Omega,
\]

поэтому для любых \((z_1, z_2) \in \Omega\)

\[
 \sum_{i=0}^{m} p_i(z_1) D_{i,0}f(z_1, z_2) = 0,
\]
но тогда
\[\sum_{i=0}^{m} p_i(z_1)D_{i,j}f(z_1, z_2) = 0, \quad j = 0, m. \]

Полагая здесь \(z_2 = z_0^2 \), получим
\[\sum_{i=0}^{m} p_i(z_1)D_{i,j}f(z_1, z_0^2) = 0, \quad j = 0, m. \]

Так как \(W(\{ z_1 \to D_{0,j}f(z_1, z_0^2) \}_{j=0}^{m-1}) \neq 0 \), то \(\{ z_1 \to D_{0,j}f(z_1, z_0^2) \}_{j=0}^{m-1} \) — фундаментальная система решений уравнения

\[\sum_{i=0}^{m} p_i(z_1)\frac{d^i u}{dz_1^i} = 0, \quad p_m(z_1) \neq 0. \]

Поэтому
\[f(z_1, z_2) = \sum_{j=1}^{m} D_{0,j-1}f(z_1, z_0^2) \cdot c_j(z_2), \]
откуда получим систему уравнений
\[\sum_{j=1}^{m} D_{i-1,j-1}f(z_1^0, z_2^0) \cdot c_j(z_2) = D_{i-1,0}f(z_1^0, z_2), \quad i = 1, m. \]

Из этой системы голоморфные функции \(c_j(z_2) \) определяются однозначно, так как \(\det(D_{i,j}f(z_1^0, z_2^0))_{m \times m} \neq 0 \).

Достаточность. Из представления

\[f(z_1, z_2) = \sum_{j=1}^{m} D_{0,j-1}f(z_1, z_0^2) \cdot c_j(z_2) \]

следует, что \(a_j(z_1) : = D_{0,j-1}f(z_1^0, z_2^0), \quad b_j(z_2) : = c_j(z_2) \). Ясно, что \(W(a)(z_1) \neq 0 \), так как \(\det(D_{i,j}f(z_1, z_2))_{m \times m} \neq 0 \). Согласно лемме

\[\det(D_{i,j}f(z_1, z_2))_{m \times m} = \det(D_{i,j}f(z_1, z_0^2))_{m \times m} \cdot \det(b^{(j)}(z_2))_{m \times m}, \]

поэтому условие \(W(b)(z_2) \neq 0 \) также выполнено. \[\square \]

Список литературы

Задача о разделении переменных

Поступила в редакцию 24 октября 2019 г. Исследование выполнено при финансовой поддержке РФФИ (проект № 1801-00638.)

ABSTRACT

The paper presents a criterion for the admissibility of the separation of variables for a holomorphic function of two variables.

Key words: separation of variables, holomorphic function.