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1. INTRODUCTION

We follow the standard notation for the Weierstrass σ-, ζ-, and ℘-functions constructed from the
lattice Γ = 2ω1Z+ 2ω2Z with periods 2ω1, 2ω2, Imω2/ω1 > 0 (see, e.g., [1]). The lattice Γ is always
assumed to be fixed and, therefore, the dependence of functions on Γ is not indicated as a rule in what
follows.

In [2], for the Baker–Akhiezer function

Φ(x) =
σ(z − x)

σ(x)σ(z)
eζ(z)x,

the following additivity theorem was proved:

Φ(x+ y) =
Φ(x)Φ′(y)− Φ′(x)Φ(y)

℘(x)− ℘(y)
.

It implies that, for an arbitrary α, the function

f(x) =
eαx

Φ(x)
=

σ(x)σ(z)

σ(z − x)
eαx−ζ(z)x, (1.1)

where z �≡ 0 (modΓ), satisfies the relation

f(x+ y) =
f(x)2a(y)− f(y)2a(x)

f(x)b(y)− f(y)b(x)
, (1.2)

in which a(x) = f(x)2(℘(x) + λ),

b(x) = f ′(x) + μf(x), (1.3)

and the parameters λ and μ can be chosen arbitrarily. The simplest formulas are obtained for λ = −℘(z)
and, therefore, everywhere below we shall assume that

a(x) = f(x)2(℘(x)− ℘(z)). (1.4)
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Formula (1.2) means that the function (1.1) is the exponential of the Buchstaber formal group

F (u, v) =
u2A(v)− v2A(u)

uB(v)− vB(u)
, (1.5)

where

A(t) = 1 +

∞∑

i=1

Ait
i, B(t) = 1 +

∞∑

i=1

Bit
i.

The corresponding passage is carried out by the changes

u = f(x), v = f(y), A(t) = a(f−1(t)), B(t) = b(f−1(t)).

It follows from the form of the group (1.5) that the coefficients A2 and B1 of the series A(t) and B(t) can
be chosen arbitrarily.

The converse problem was proved in [3]; namely, it was proved that the exponential of the formal
group law (1.5) is a function of the form (1.1). Let us present the precise formulation of this result from
the book [4] (see Theorem E 5.4).

Theorem 1. Let a formal group law (1.5) be given, where A(t), B(t) ∈ R[[t]], let R be a torsion-free
ring, and let A(0) = B(0) = 1. Then the exponential of the law (1.5) is of the form (1.1), where
α and the parameters ℘(z), ℘′(z), and g2 defining the Baker–Akhiezer function Φ(x, z) can be
expressed using the coefficients of the series A(t) and B(t) using the expansion

f(x) = x+ 2α
x2

2
+ 3(α2 + ℘(z))

x3

3!
+ 4(α3 − ℘′(z) + 3α℘(z))

x4

4!

+ (5α4 + 30α2℘(z) + 45℘(z)2 − 20α℘′(z)− 3g2)
x5

5!
+ · · · .

The subsequent considerations use this theorem; therefore, everywhere below, it is assumed that the
formal group laws are considered over torsion-free rings.

For a positive integer n > 1, denote by zn the point of exact order n on the torus C/Γ. In other words,
zn = (2ω1k + 2ω2l)/n, where k and l are integers and (k, l, n) = 1. Following [5]–[7], we define an
elliptic function of level n by the relation

fn(x) =
σ(x)σ(zn)

σ(zn − x)
e−hnx, (1.6)

where hn = (2η1k + 2η2l)/n (ηj = ζ(ωj), j = 1, 2). Every function of this kind is a special case of the
exponential of the Buchstaber formal group and is obtained by substituting z = zn and

α = αn = ζ(zn)− hn (1.7)

into relation (1.6). The series a(x) and b(x) defining the addition law (1.2) become

an(x) = fn(x)
2(℘(x) − ℘(zn)), (1.8)

bn(x) = f ′
n(x) + μnfn(x), (1.9)

where μn can be chosen arbitrarily. Here, in the formal group law (1.5), the following functions are
involved:

An(t) = an(f
−1
n (t)), Bn(t) = bn(f

−1
n (t)),

i.e., some specialization of the group (1.5) is obtained in every case.
The following three functions, which can be expressed using the Jacobi elliptic functions, are elliptic

functions of level 2:

• f(x) = snx (for z = ω2);

• f(x) = scx := snx/ cnx (for z = ω1);

MATHEMATICAL NOTES Vol. 102 No. 1 2017



BUCHSTABER FORMAL GROUP AND ELLIPTIC FUNCTIONS 83

• f(x) = sdx := snx/dnx (for z = ω1 + ω2).

They satisfy the additivity theorem

f(u+ v) =
f(u)2 − f(v)2

f(u)f ′(v)− f(v)f ′(u)
,

to which the following formal group law corresponds:

F (u, v) =
u2 − v2

uB(v)− vB(u)
. (1.10)

Moreover, as is well known, the Jacobi elliptic sine y(z) = sn(z, k) is uniquely defined as the solution of
the differential relation

y′(z)2 = (1− ξy(z)2)(1− ηy(z)2)

(ξ = 1, η = k2) with the initial data y(0) = 0, y′(0) = 1. The functions y(z) = sn(z, k)/ cn(z, k)
(ξ = −1, η = k2 − 1) and y(z) = sn(z, k)/dn(z, k) (ξ = −k2, η = 1− k2) satisfy similar differential
relations (with the same initial data). In terms of the formal group law (1.5), the properties (of elliptic
functions of level 2) listed above can be reformulated as follows.

Theorem 2. Any elliptic function of level 2 is the exponential of the formal group (1.5) in which
A2(t) = 1 and, for B1 = 0, the function B(t) = B2(t) satisfies the quadratic relation

B(t)2 = 1 + 2B2t
2 + (B2

2 + 2B4)t
4. (1.11)

The coefficient ring of the formal group law (1.10) is described in [8].
For the level n = 3, the following result was proved in [7] and [9].

Theorem 3. An arbitrary elliptic function of level 3 is the exponential of a formal group (1.5) in
which, for B1 = 2A1 and A2 = 0, the series A(t) = A3(t) and B(t) = B3(t) satisfy the relations

A(t)2 = B(t), (1.12)

A(t)3 − 3A1tA(t) = 1 + (A3
1 + 3A3)t

3, (1.13)

B(t)(B(t)− 3A1t)
2 = (1 + (A3

1 + 3A3)t
3)2. (1.14)

In this theorem, the first relation connects A(t) and B(t), the second one connects t and A(t), and
the third one t and B(t). (The last formula becomes somewhat more complicated if the coefficients are
expressed in terms of B1 = 2A1 and B3 = 2A3.) Note that a formal group with the relation A(t)2 = B(t)
occurred in [10] in the study of formal groups obtained from the addition law for points on an elliptic
curve.

For the level n = 4, as was proved in [11], forA2 = B1 = 0, the series A(t) = A4(t) and B(t) = B4(t)
are connected by the relation

(2B(t) + 3A1t)
2 = 4A(t)3 − (3A2

1 − 8B2)t
2A(t)2. (1.15)

Seemingly, this relation is one of the simplest formulas connecting t, A(t), and B(t).
As is well known, every two elliptic functions with the same periods are connected by an algebraic

relation (see [1, Sec. 16]). For an arbitrary level n, the functions fn
n , ann, and bnn are elliptic (see Lemma 2

below) and, therefore, every two of the three functions fn, an, and bn must be connected by an algebraic
relation. Hence, for every n ≥ 2, every two of the three power series t, An(t), Bn(t) must also be
connected by an algebraic relation similar to (1.12)–(1.14). In the present paper, we solve the problem
of finding these relations in the case of n = 4. The main idea is to express the functions an, bn, and fn
using the functions ℘ and ℘′ associated with the original lattice Γ and then eliminate ℘ and ℘′ from the
relations thus obtained with the help of the following identity (g2 = g2(Γ), g3 = g3(Γ)):

℘′(x)2 = 4℘(x)3 − g2℘(x)− g3. (1.16)

In Secs. 3 and 4, following this approach, we prove Theorems 2 and 3, respectively.
In Sec. 5, a solution of the problem posed above is given.
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Theorem 4. An arbitrary elliptic function of level 4 is the exponential of a formal group (1.5) in
which, for B1 = A1/2, the series A(t) = A4(t) and B(t) = B4(t) satisfy the relations

C3A(t)
4(A(t)2 − 1)2 + C3

1B(t)2(A(t)3 −B(t)2) = 0, (1.17)

(A(t)2 − 1)2 = C2
1t

2A(t) + C4t
4, (1.18)

C2
1B(t)(B(t) + C1t)

3 −C4t
2B(t)(2B(t) + C1t) = (1− C4t

4)(C2
1 − C2

3 t
4), (1.19)

where C1 = −2A1, C3 = −A3
1/2− 4A3, and C4 = C1C3 = A4

1 + 8A1A3.

Note that relation (1.15) does not follow from (1.17)–(1.19), because it is obtained under the
assumption that B1 = 0 rather than B1 = A1/2.

It follows from the definitions in (1.1), (1.3), and (1.4) that, for an arbitrary z, the functions a/f2

and b/f are elliptic, and thus are connected by an algebraic relation. Therefore, for the universal
Buchstaber formal group (1.5), there is an algebraic relation connecting t, A(t), and B(t). It is
established in Sec. 6.

Theorem 5. The series A(t) and B(t) defining a formal group law (1.5) over a torsion-free group
are related for A1 = 2B1 by an algebraic relation

A(t)(A(t) −B(t)2 + (B2
1 + 2B2)t

2)

+ t3(B(t)(2B1B2 + 3A3) + t(2B4 + 2B2
1B2 + 9B1A3 +B2

2)) = 0. (1.20)

2. AUXILIARY ASSERTIONS

Lemma 1. The points of orders 2 and 4 are characterized by the conditions ℘′(z2) = 0 and
℘′(2z4) = 0, respectively. The points of order n ≥ 3 (n �= 4) are characterized by the conditions

℘((n − 1)zn) = ℘(zn) �= ∞, ℘(kzn) �= ℘(zn) for 2 ≤ k ≤ n− 3. (2.1)

Proof. The mapping z → (℘(z), ℘′(z)) defines an isomorphism between the torus C/Γ and the elliptic
curve y2 = 4x3 − g2(Γ)x− g3(Γ). Hence the points of order n can be characterized by the conditions

℘((n− 1)zn) = ℘(zn), ℘′((n− 1)zn) = −℘′(zn) (2.2)

under the assumption that n cannot be replaced by a lesser number. Therefore, the points of order 2 are
characterized by the condition ℘′(z2) = 0. Thus, the points of order 4 are characterized by the condition
℘′(2z4) = 0.

Let n ≥ 3 and n �= 4. Obviously, conditions (2.1) are necessary for zn to be a point of order n. Let us
verify their sufficiency. If the second condition in (2.2) is violated, then

℘((n − 1)zn) = ℘(zn), ℘′((n − 1)zn) = ℘′(zn).

Thus, we have (n− 1)zn ≡ zn (modΓ). For n = 3, this congruence contradicts the condition that
℘(zn) �= ∞. For n ≥ 5, the congruence thus obtained means that zn is a point of order d | (n− 2).
However, in this case ℘(kzn) = ℘(zn), where k = 3 for d = 2 and k = d− 1 ≤ n− 3 for d > 2. The
contradiction shows that conditions (2.2) indeed follow from (2.1). Moreover, in relations (2.2), one
cannot replace n by a lesser number (a divisor of n), because this also contradicts the second condition
in (2.1).

Lemma 2. Let n ≥ 2 and let the functions fn, an, and bn be given by relations (1.6), (1.8), and (1.9),
respectively. Then

fn(x)
n =

σ(x)nσ(zn)
n−1σ((n− 1)zn)

σ(zn − x)n−1σ(x+ (n− 1)zn)
.

The functions fn
n , ann, and bnn are elliptic.
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Proof. Using the formula (see [12, 18.2.20])

σ(t+ 2kω1 + 2lω2) = (−1)k+l+klσ(t)e(t+kω1+lω2)(2kη1+2lη2)

for t = x− zn and t = −zn, we see that

σ(x+ (n− 1)zn)σ(−zn)

σ((n − 1)zn)σ(x− zn)
= enhnx.

Hence

fn(x)
n =

σ(x)nσ(zn)
n

σ(zn − x)n
e−nhnx =

σ(x)nσ(zn)
n−1σ((n − 1)zn)

σ(zn − x)n−1σ(x+ (n− 1)zn)
.

The definition (1.6) implies the equalities

fn(x+ 2ω1) = fn(x)e
2πil/n, fn(x+ 2ω2) = fn(x)e

−2πik/n,

and therefore fn
n is an elliptic function. The ellipticity of the function ann follows from the definition of an

and from the ellipticity of fn
n .

It follows from the standard formulas

ζ(u+ v) = ζ(u) + ζ(v) +
1

2
· ℘

′(u)− ℘′(v)

℘(u)− ℘(v)
(2.3)

(see [12, 18.4.3]) and ζ(z) = (log z)′ that

f ′(x)

f(x)
= −1

2
· ℘

′(x) + ℘′(z)

℘(x)− ℘(z)
+ α.

Thus, the logarithmic derivative of the function f is an elliptic function. Hence the function

b(x)

f(x)
=

f ′(x)

f(x)
+ μ = −1

2
· ℘

′(x) + ℘′(z)

℘(x)− ℘(z)
+ α+ μ (2.4)

is also elliptic. Therefore, the ellipticity of bnn follows from the ellipticity of fn
n and the ellipticity of the

ratio bn/fn.

Lemma 3. Let n ≥ 2. Then the quantity αn, defined by relation (1.7) can be expressed as

αn =
(n− 1)ζ(zn)− ζ((n− 1)zn)

n
.

Proof. Using the formula (see [12, 18.2.19])

ζ(t+ 2kω1 + 2lω2) = ζ(t) + 2kη1 + 2lη2,

for t = −zn, we see that nhn = ζ(zn) + ζ((n− 1)zn). Substituting this expression into the definition of
the quantity αn, we arrive at the assertion of the lemma.

The following assertion can be verified by immediate calculations.

Lemma 4. The initial coefficients of the series A(t) = a(f−1(t)) and B(t) = b(f−1(t)), where the
functions f , a, and b are defined by the relations (1.1), (1.4), and (1.3), respectively, have the form

A1 = 2α, A2 = 0, A3 =
1

3
(α3 − 3α℘(z) − ℘′(z)), A4 = −A1A3, (2.5)

B1 = 2α+ μ, B2 =
1

2
(3℘(z) − α2), B3 = 2A3, (2.6)

B4 =
1

8
(−9α4 + 30α2℘(z) + 3℘(z)2 + 12α℘′(z)− g2). (2.7)
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3. LEVEL 2

Proof of Theorem 2. Applying in succession Lemma 2 and the formula (see [12, 18.4.4])

℘(u)− ℘(v) = −σ(u− v)σ(u + v)

σ(u)2σ(v)2
, (3.1)

we see that
1

f2(x)2
= −σ(x− z2)σ(x+ z2)

σ(x)2σ(z2)2
= ℘(x)− ℘(z2). (3.2)

Thus, by the definition in (1.4), a2(t) = 1. Hence A2(t) = 1.
Let us prove the validity of the relation

b2(x)
2 = 1 + 3℘(z2)f2(x)

2 +
℘′′(z2)

2
f2(x)

4. (3.3)

By Lemma 3, α2 = 0. By the assumption B1 = 0 and by the relation B1 = 2α+ μ, we must choose
μ2 = 0 in the definition of the function b2(x). It follows from the condition ℘′(z2) = 0 characterizing
points of second order (see Lemma 1) and from relation (2.4) that

b2(x)

f2(x)
= −1

2
· ℘′(x)

℘(x)− ℘(z2)
. (3.4)

Expressing ℘(x) and ℘′(x) using relations (3.2) and (3.4), substituting the expressions into the
Weierstrass equation (1.6), and taking into account the condition 4℘(z2)

3 − g2℘(z2)− g3 = 0, we arrive
at the relation (3.3). It follows from formulas (2.6) and (2.7) for α = μ = 0 that

B2 =
3

2
℘(z2), 2B4 =

℘′′(z2)

2
−B2

2 .

Therefore, when passing to the series B2(t) = b2(f
−1
2 (t)), relation (3.3) becomes (1.11).

Remark 1. Theorem 2 claims, in particular, that the condition A(t) = 1 is necessary for the exponential
of Buchstaber’s formal group to be an elliptic function of level 2. It follows from relations (2.5) that this
condition is also sufficient. Indeed, if A1 = A3 = 0, then α = 0 and ℘′(z) = 0, i.e., z is a point of order 2.

4. LEVEL 3

Lemma 5. The following equalities hold:

a3(x)
2

f3(x)
= −1

2

(
℘′(x) + ℘′(z3)

℘(x)− ℘(z3)
+

℘′′(z3)

℘′(z3)

)
, (4.1)

f3(x)
3 = −1

2
· 1

(℘(x)− ℘(z3))2

(
℘′(x) + ℘′(z3)

℘(x)− ℘(z3)
+

℘′′(z3)

℘′(z3)

)
. (4.2)

Proof. It suffices to prove only the first equality, since the other one is a consequence of the first one and
of the definition of the function a3(x). By Lemma 2,

f3(x)
3 =

σ(x)3σ(z3)
2σ(2z3)

σ(z3 − x)2σ(x+ 2z3)
.

It follows from (3.1) that

(℘(x)− ℘(z))2 =
σ(x− z)2σ(x+ z)2

σ(x)4σ(z)4
. (4.3)

Thus,

a3(x)
2

f3(x)
= f3(x)

3(℘(x)− ℘(z3))
2 =

σ(2z3)σ(x+ z3)
2

σ(x)σ(z3)2σ(x+ 2z3)
=

−σ(2z3)

σ(z3)4(℘(x+ z3)− ℘(z3))
.
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It follows from the relation σ(2z) = −℘′(z)σ(z)4 (see [12, 18.4.8]) that

a3(x)
2

f3(x)
=

℘′(z3)

℘(x+ z3)− ℘(z3)
.

To prove the lemma, it remains to prove the validity of the equality

℘′(z)

℘(x+ z)− ℘(z)
= −1

2
· ℘

′(x)− ℘′(2z)

℘(x)− ℘(2z)
− 1

2
· ℘

′′(z)

℘′(z)
. (4.4)

Substituting the values u = v = z and u = −x, v = 2z + x into (2.3), we see that

℘′′(z)

2℘′(z)
= ζ(2z)− 2ζ(z), (4.5)

−1

2
· ℘

′(x)− ℘′(2z)

℘(x)− ℘(2z)
= ζ(x) + ζ(2z)− ζ(x+ 2z). (4.6)

Adding the formulas obtained by the substituting the values u = x+ z, v = z and u = −x− z, v = z
into (2.3), we obtain an additional equality,

℘′(z)

℘(x+ z)− ℘(z)
= 2ζ(z)− ζ(x+ 2z) − ζ(−x). (4.7)

The desired formula (4.4) is the sum of (4.5), (4.6), and (4.7).

In what follows, we use the notation Ln = ℘′′(zn)/℘′(zn).

Proof of Theorem 3. Let us prove first that an arbitrary elliptic function of level 3 satisfies the additivity
theorem (1.2), in which, for μ3 = −L3/3 and for the functions f(x) = f3(x), a(x) = a3(x), and
b(x) = b3(x), the following equalities hold:

a(x)2 = b(x), (4.8)

a(x)3 + L3a(x)f(x) = 1− ℘′(z3)f(x)
3, (4.9)

b(x)(b(x) + L3f(x))
2 = (1− ℘′(z3)f(x)

3)2. (4.10)

Using Lemma 3 and the formula (see [12, 18.4.7])

ζ(2z) = 2ζ(z) +
1

2
· ℘

′′(z)

℘′(z)
,

we see that

α3 =
2ζ(z3)− ζ(2z3)

3
= −1

6
· ℘

′′(z3)

℘′(z3)
= −L3

6
, α3 + μ3 = −L3

2
.

Therefore, relation (4.8) follows from (2.4) and (4.1).
It follows from the duplication formula (see [12, 18.4.5])

℘(2z) = −2℘(z) +
1

4

(
℘′′(z)

℘′(z)

)2

(4.11)

that the condition ℘(2z3) = ℘(z3) characterizing points of third order (see Lemma 1) can be represented
in the form

12℘(z3)℘
′(z3)

2 = ℘′′(z3)
2. (4.12)

Expressing ℘(x) and ℘′(x) from relations (4.2) and (1.4), substituting the obtained expressions into the
Weierstrass equation (1.16), and taking into account the conditions

℘′(z3)
2 = 4℘(z3)

3 − g2℘(z3)− g3 = 0
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and (4.12), we obtain (4.9). Relations (2.4) and b(x) = f(x)4(℘(x)− ℘(z))2 imply (4.10) in the same
way.

We see from (2.5) that, for α3 = −L3/6, the relations L3 = 3A1 and ℘′(z) = −A3
1 − 3A3 hold.

Therefore, when passing to the series A3(t) = a3(f
−1
3 (t)) and B3(t) = b3(f

−1
3 (t)), relations (4.9)

and (4.10) acquire the form (1.13) and (1.14), respectively. Equation (1.12) is an immediate consequence
of (4.8).

Remark 2. As was proved in [6], the relation A(t)2 = B(t) is not only a necessary but also a sufficient
condition for the exponential of the Buchstaber formal group (1.5) to be an elliptic function of level 3.
This can readily be verified using relations (2.5)–(2.7). Equating to zero the coefficients at t2 and t4

in the formula A(t)2 −B(t) = 0, we obtain the relations ℘(z) = 3α2 and ℘′′(z) + 6α℘′(z) = 0, which
imply that the point z satisfies the condition (4.12) characterizing the points of order three.

5. LEVEL 4

Lemma 6. Let z4 be a point of order 4. Then

a4(x)
2 =

℘(x− z4)− ℘(2z4)

℘(z4)− ℘(2z4)
, (5.1)

f4(x)
4 =

1

(℘(x)− ℘(z4))2
· ℘(x− z4)− ℘(2z4)

℘(z4)− ℘(2z4)
. (5.2)

Proof. As in the case n = 3, we restrict ourselves to the proof of the first relation, because the second
relation is a consequence of the first one and of the definition of the function a(x). By Lemma 2,

f4(x)
4 =

σ(x)4σ(z4)
3σ(3z4)

σ(z4 − x)3σ(x+ 3z4)
.

Using formula (4.3), we see that

a4(x)
2 = f4(x)

4(℘(x)− ℘(z4))
2 =

σ(3z4)σ(x + z4)
2

σ(z4)σ(x+ 3z4)σ(z4 − x)
.

Applying formula (3.1) to both sides of the equality ℘(z4)− ℘(x) = ℘(3z4)− ℘(x), we see that

σ(3z4)σ(x+ z4)
2

σ(z4)σ(x+ 3z4)σ(z4 − x)
= −σ(x− 3z4)σ(x+ z4)σ(z4)

σ(x− z4)2σ(3z4)
.

Thus,

a4(x)
2 = −σ(x− 3z4)σ(x+ z4)σ(z4)

σ(x− z4)2σ(3z4)
=

℘(x− z4)− ℘(2z4)

℘(z4)− ℘(2z4)
.

Lemma 7. We have

α4 = −1

4
· ℘

′′(z4)

℘′(z4)
=

℘′(z4)3

℘′′(z4)2 − ℘′(z4)℘′′′(z4)
.

Proof. By Lemma 3,

α4 =
3ζ(z4)− ζ(3z4)

4
.

Using the identity (see [12, 18.4.9])

ζ(3z) = 3ζ(z) +
4℘′(z)3

℘′(z)℘′′′(z) − ℘′′(z)2

and relation (5.7), we obtain the desired representation for α4.
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Proof of Theorem 4. Let us prove first that, for μ = −L4/4, the functions f(x) = f4(x), a(t) = a4(t),
and b(t) = b4(t) satisfy the conditions

℘′(z)a(t)4(a(t)2 − 1)2 + L3
4b(t)

2(a(t)3 − b(t)2) = 0, (5.3)

(a(t)2 − 1)2 = L2
4f(t)

2a(t) + ℘′′(z)f(t)4, (5.4)

b(t)L2
4(b(t) + L4f(t))

3 − b(t)f(t)2L4℘
′(z4)(2b(t) + f(t)L4)

= (1− ℘′′(z)f(t)4)(L2
4 − ℘′(z4)

2f(t)4). (5.5)

It follows from the formula (see [12, 18.4.6])

℘′(2z) =
−4℘′(z)4 + 12℘(z)℘′(z)2℘′′(z)− ℘′′(z)3

4℘′(z)3

that the condition ℘′(2z4) = 0 characterizing the points of order 4 (see Lemma 1) can be represented in
the form

12℘(z4)℘
′(z4)

2℘′′(z4) = 4℘′(z4)
4 + ℘′′(z4)

3. (5.6)

Since 12℘(z)℘′(z) = ℘′′′(z), one can also represent this relation in the form

℘′(z4)℘
′′(z4)℘

′′′(z4) = 4℘′(z4)
4 + ℘′′(z4)

3. (5.7)

It follows from (4.11) that formula (5.7) is equivalent to the equality

℘(2z4)− ℘(z4) = −℘′(z4)2

℘′′(z4)
. (5.8)

It follows from formulas (5.6)–(5.8) that all the parameters that we need can be expressed using
℘′(z4) and ℘′′(z4); namely,

℘(z4) =
4℘′(z4)4 + ℘′′(z4)3

12℘′(z4)2℘′′(z4)
, ℘(2z4) = ℘(z4)−

℘′(z4)2

℘′′(z4)
,

g2 = 12℘(z4)
2 − 2℘′′(z4), g3 = 4℘(z4)

3 − g2℘(z4)− ℘′(z4)
2.

To prove relation (5.4), it remains to apply to ℘(x− z4) the additivity theorem (see [12, 18.4.1]):

℘(u+ v) + ℘(u) + ℘(v) =
1

4

(
℘′(u)− ℘′(v)

℘(u)− ℘(v)

)2

,

express the quantities ℘(x) and ℘′(x) from relations (1.4) and (5.1), and substitute the expressions into
the Weierstrass relation (1.16).

For z = z4 and μ = α4 = −L4/4, relation (2.4) becomes

b4(x)

f4(x)
= −1

2

(
℘′(x) + ℘′(z4)

℘(x)− ℘(z4)
+

℘′′(z4)

℘′(z4)

)
.

Eliminating the quantities ℘(x) and ℘′(x) from this relation and from (5.2), we arrive at relation (5.5)
connecting b4(x) and f4(x).

It follows from (2.5) and (1.4) that

b4(x)
2

a4(x)
=

b4(x)
2

f4(x)2
· f4(x)

2

a4(x)
=

1

4(℘(x)− ℘(z4))

(
℘′(x) + ℘′(z4)

℘(x)− ℘(z4)
+

℘′′(z4)

℘′(z4)

)2

.

Eliminating the quantities ℘(x) and ℘′(x) from this relation and from (5.1), we arrive at relation (5.3)
connecting a4(x) and b4(x).

We see from formula (2.5) that, for μ = α4 = −L4/4, the following relations hold:

L4 = −2A1, B1 =
A1

2
, ℘′(z4) = −A3

1

2
− 4A3, ℘′′(z4) = A4

1 + 8A1A3.

Therefore, when passing to the series A4(t) = a4(f
−1
4 (t)) and B4(t) = b4(f

−1
4 (t)), we see that rela-

tions (5.3)–(5.5) take the form (1.17)–(1.19), respectively.
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Remark 3. As was noted above, in the cases n = 2 and n = 3, the relations A(t) = 1 and A(t)2 = B(t)
are not only necessary but also sufficient conditions for the exponential of the Buchstaber formal
group (1.5) to be an elliptic function of level 2 or 3, respectively (see Remarks 1 and 2). Let us consider
relation (1.17) connecting the series A(t) and B(t) forn = 4. This relation becomes a sufficient condition
for the exponential of the Buchstaber formal group (1.5) to be an elliptic function of level 4 if we assume
in addition that A(t) �= 1. Indeed, if A1 = 2α = 0 and A3 = 0, then f is an elliptic function of level 2
and A(t) = 1. If A1 = 2α = 0 and A3 �= 0, then C3 �= 0, and we again see from relation (1.17) that
A(t) = 1. If A1 = 2α �= 0, then, using formulas (2.5)–(2.7) and equating to zero the coefficients at t, t2,
and t4 in relation (1.17), we see that

μ = α, 16α3 − ℘′(z)− 12α℘(z) = 0, α = − ℘′′(z)

4℘′(z)
.

The last two relations imply the validity of condition (5.6) characterizing the points of order 4.

6. ALGEBRAIC RELATION FOR THE UNIVERSAL BUCHSTABER FORMAL GROUP

Proof of Theorem 5. Let us prove first that, for μ = −α, the functions a(x) and b(x) are connected by
the relation

a(x)(a(x) − b(x)2 + 3℘(z)f(t)2) = f(x)3
(
b(x)℘′(z)− ℘′′(z)

2
f(x)

)
. (6.1)

Let us express the values ℘(x) and ℘′(x) from relations (1.4) and (2.4):

℘(x) =
a(x)

f(x)2
+ ℘(z),

℘′(x) = −2a(x)b(x)

f(x)3
− ℘′(z).

Substituting these expressions into the Weierstrass equations (1.16), we see that the parameter g3 is
cancelled. Replacing g2 by the formula g2 = 12℘(z)2 − 2℘′′(z), we arrive at the relation (6.1).

It follows from formulas (2.5)–(2.7) that, for μ = −α, the following relations hold:

3℘(z) = B2
1 + 2B2, ℘′(z) = −2B1B2 − 3A3,

℘′′(z)

2
= 2B4 + 2B2

1B2 + 9B1A3 +B2
2 .

Therefore, when passing to the series A(t) = a(f−1(t)) and B(t) = b(f−1(t)), relation (6.1) acquires
the form (1.20).

Remark 4. Formulas (1.20) and (6.1), which are proved above for B1 = A1/2 (μ = −α), cannot
be used simultaneously with the relations (1.12)–(1.14) and (1.17)–(1.19), obtained for the levels
n = 3 (B1 = 2A1, μ = 2α) and n = 4 (2B1 = 3A1, μ = α), respectively. For n = 2, no contradictions
occur, because the relations A2(t) = 1 and B2(t)

2 = 1 + 2B2t
2 + (B2

2 + 2B4)t
4 are obtained under the

assumptions μ = α2 = 0, which do not contradict the equality μ = −α.

The author thanks E. Yu. Bun’kova for a fruitful discussion of results obtained here and for valuable
remarks concerning the original text of the paper.
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