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1. INTRODUCTION

Let a1, . . . , an be jointly coprime positive integers (the greatest common divisor of all the num-
bers is 1). The Frobenius number g(a1, . . . , an) is the greatest integer m not representable as

x1a1 + . . . + xnan = m, (1)

where x1, . . . , xn are nonnegative integers. The modified Frobenius number

f(a1, . . . , an) = g(a1, . . . , an) + a1 + . . . + an

is the greatest integer m that cannot be represented in the form (1) with positive integer coefficients
x1, . . . , xn. The problem of finding g(a1, . . . , an) (or f(a1, . . . , an)) is called the Frobenius problem.

For n = 2, there is a well-known formula attributed to Sylvester (see [37]; background informa-
tion can be found in [31]): f(a, b) = ab. If n = 3, then f(a, b, c) is expressible in terms of continued
fractions (see the results of Selmer, Beyer, and Rødseth [32, 35]). There also exist other approaches
to finding the Frobenius numbers with three arguments (see [31, Ch. 2] and later results in [20, 21]);
however, from an analytic point of view, Rødseth’s formula (see below) is the most convenient. It
allows one to apply the technique used for analyzing the statistical properties of finite continued
fractions (see, for example, [6]) to the study of Frobenius numbers. In particular, Rødseth’s formula
has helped to solve Arnold’s problem on the weak asymptotics of Frobenius numbers (i.e., the
asymptotics in the mean; see [13, problems 1999-8, 2003-5] and [1]): f(a, b, c) ∼ 8

π

√
abc (see [7, 9]);

to obtain, as a corollary, a proof of Davison’s conjecture from [17]: the mean value of the normalized
Frobenius numbers f(a,b,c)√

abc
is 8/π; and to find the density for the distribution of normalized Frobenius

numbers (see [8]):

p(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t ∈ [0,
√

3],

12
π

(
t√
3
−

√
4 − t2

)

if t ∈ [
√

3, 2],

12
π2

(

t
√

3 arccos
t + 3

√
t2 − 4

4
√

t2 − 3
+

3
2

√
t2 − 4 log

t2 − 4
t2 − 3

)

if t ∈ [2,+∞).

The existence of this density was established by Bourgain and Sinai in [2] (see also [36]).
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For n ≥ 4, formulas for finding f(a1, . . . , an) are known only in some particular cases; probably,
the most general result is that concerning chain sequences [4, 5]. It was proved that for fixed n
the Frobenius number can be calculated in polynomial time (see [26]), whereas for arbitrary n the
determination of f(a1, . . . , an) becomes an NP-hard problem (see [27]).

Recently, a number of results on the statistical properties of the Frobenius numbers with an
arbitrary number of arguments have been obtained by the methods of the geometry of numbers
(see [11, 12]) and the methods of ergodic theory (see [28, 29]); relevant experimental data can be
found in [3] and [29]. Therefore, the geometric interpretation proposed in the present study for
Rødseth’s formula seems to be of interest. One may hope that this interpretation will also help
understand the problem in higher dimensions, when the situation becomes much more complicated
(see [19]). Note that in [14] Arnold suggested using the geometric interpretation of continued
fractions for studying the Frobenius numbers; however, he did not obtain explicit formulas.

The proof of Rødseth’s formula presented below is based on a few simple propositions (see the
properties of L-shaped diagrams and Lemmas 1 and 2 below) that are well known. Along with short
proofs of these propositions (which are not original and are presented only for the convenience of the
reader), we give references to publications in which these propositions appeared independently. The
references should illustrate the relationship between different problems and complement somewhat
the historical remarks from [31].

2. DOUBLE-LOOP NETWORKS

When determining the Frobenius number f(a, b, c), one can get rid of common divisors of the
arguments by the Johnson formula from [25],

f(da, db, c) = df(a, b, c). (2)

Therefore, below we will assume that (a, b) = (a, c) = (b, c) = 1.
Given a triple (a, b, c), we introduce a double-loop network which is an oriented graph on a

vertices 0, 1, 2, . . . , a − 1 with edges of two types, j → j + b (mod a) and j → j + c (mod a), with
weights (lengths) wb and wc, respectively. To solve the Frobenius problem, one should choose wb = b
and wc = c (it takes time b to traverse an edge of the first type and time c to traverse an edge of
the second type). To each route that starts at the zero vertex and passes x edges of length b and
y edges of length c in time t(x, y) = bx+ cy, we will assign a cell K(x, y) (the coordinates of the cell
are the coordinates of its lower left corner) and a number n(x, y) = t(x, y) (mod a), the number of
the final vertex of the route.

To describe the main parameters of a double-loop network (such as the diameter, the mean dis-
tance between vertices, the length of the shortest cycle, . . . ), one needs the description of the short-
est paths between vertices. Due to the obvious symmetry, it suffices to restrict the analysis to paths
that start at the zero vertex. A full description is given by an L-shaped diagram (it has the form of
a rectangle with a cut-out upper right corner; see Figs. 2–4 below) which is constructed as follows.

The time instants t(x, y) (x, y ≥ 0) are arranged in increasing order, 0 = t0 < t1 < . . . < tj < . . . ,
and, for each tj = t(x, y), provided that the number n(x, y) is missing in the diagram, a cell K(x, y)
with number n(x, y) is added to the diagram; if several cells can be added simultaneously, then one
adds the cell with the least ordinate.

In other words, if a number n = n(x, y) is written in a cell K(x, y), then the shortest path 0 → n
passes through x edges of length b and y edges of length c. Since (a, b) = (a, c) = 1, each vertex of
the graph is reachable and the diagram (henceforth denoted by L) consists of exactly a cells.

Figure 1 shows a double-loop network constructed for the numbers a = 7, b = 3, and c = 5.
The solid arrows are of length b = 3, and the dashed arrows are of length c = 5. Figure 2 shows the
corresponding diagram L (bottom) and a diagram with the times of the shortest paths (top).
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n(x, y) = t(x, y) (mod a) (number)

t(x, y) = bx + cy (time)

Fig. 1. Fig. 2.

Double-loop networks appeared in [38] in connection with the problem of constructing multi-
module memory structures and has been extensively studied (see surveys [15, 23, 24]). However,
still earlier, L-shaped diagrams occurred in relation to the Frobenius problem in [16] and has been
repeatedly used by different authors (see [10, 14, 19–21, 30, 32, 33, 35]).

Let us list the simplest properties of the arising diagrams:
1. If a cell K(x, y) does not belong to the diagram L, then all the other cells in the corner

⋃
u,v≥0 K(x + u, y + v) do not belong to L either.

2. If K(x, y) /∈ L but K(x − 1, y) ∈ L, then the number n(x, y) is encountered in the first
column of the diagram L.

3. If K(x, y) /∈ L but K(x, y − 1) ∈ L, then the number n(x, y) is encountered in the first row
of the diagram L.

4. If K(x, y) /∈ L but K(x − 1, y) ∈ L and K(x, y − 1) ∈ L, then n(x, y) = 0.
These properties follow from the diagram compilation rule.
Property 1 is equivalent to the fact that if K(x, y) ∈ L, then the cells K(x − u, y − v) lie in L

for all u and v with 0 ≤ u ≤ x and 0 ≤ v ≤ y.
To check property 2, assume that the number n(x, y) is encountered in a cell K(x′, y′) ∈ L that

is not in the first column. Then K(x− 1, y),K(x′ − 1, y′) ∈ L and n(x− 1, y) = n(x′ − 1, y′), which
contradicts the compilation rule (the numbers cannot be repeated).

Property 3 is analogous to property 2.
Property 4 follows from properties 2 and 3: the number n(x, y) must be encountered in the first

row and the first column, i.e., n(x, y) = n(0, 0) = 0.
The properties of the constructed diagram are closely related to the properties of the lattice

Λ =
{
(x, y) ∈ Z

2 : bx + cy ≡ 0 (mod a)
}
.

Lemma 1. The diagram obtained by applying the above-described rule is L-shaped. The trans-
lations of L by the vectors of the lattice Λ tile the entire plane. The sides of the diagram are
uniquely defined by any two vectors in the triple (see Fig. 3)

−−→
OD,

−→
AF ,

−−→
BG (

−→
AF =

−−→
OD +

−−→
BG). The

coordinates of the vectors
−−→
OD = (x0, y0),

−→
AF = (x1, y1), and

−−→
BG = (x2, y2) are characterized by

the following conditions.
−−→
OD: x0, y0 > 0, (x0, y0) ∈ Λ, t(x0, y0) = minx,y>0, (x,y)∈Λ t(x, y); if the minimum value of the

form t(x, y) is attained at several points, then the point with the least ordinate is chosen
as (x0, y0).
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Fig. 3.

−→
AF : x1 is the least positive integer for which there exists a y1 ≥ 0 such that (x1,−y1) ∈ Λ and

t(0, y1) < t(x1, 0).
−−→
BG: y2 is the least positive integer for which there exists an x2 ≥ 0 such that (x2,−y2) ∈ Λ and

t(x2, 0) ≤ t(0, y2).

Proof (see [10, 14, 22, 34, 38]). According to property 1, the diagram has the form of a
“staircase” consisting of rectangular steps. By property 4, there may exist only one cell K(x, y) /∈ L
for which K(x − 1, y) ∈ L and K(x, y − 1) ∈ L. Indeed, if there are two such cells K(x1, y1)
and K(x2, y2), then n(x1, y1) = n(x2, y2) = 0 and, hence, n(x1 − 1, y1) = n(x2 − 1, y2); but this
contradicts the assumption that K(x1 − 1, y1) ∈ L and K(x2 − 1, y2) ∈ L. Hence, the staircase
consists of at most two steps, and the diagram is L-shaped.

Each number from 0 to a− 1 appears in the diagram exactly once. Therefore, translating L by
the vectors of the lattice Λ, we obtain a tiling of the entire plane. Since n(x1, y1) = n(x2, y2) ⇔
(x1 − x2, y1 − y2) ∈ Λ, the characteristic properties of the vectors

−→
AF and

−−→
BG follow from proper-

ties 2 and 3, respectively. The characteristic properties of the vector
−−→
OD follow from the diagram

compilation rule. �
Remark 1. In some cases an L-shaped diagram may degenerate into a rectangle. Since the area

of the diagram is a, the degenerate case corresponds to the equality x1y2 = a. Hence, multiplying
the congruences bx1 ≡ cy1 (mod a) and cy2 ≡ bx2 (mod a), we obtain y1x2 ≡ 0 (mod a). However,
0 ≤ y1 < y2 and 0 ≤ x2 < x1, i.e., 0 ≤ y1x2 < x1y2 = a. Thus, y1x2 = 0. If y1 = 0, then x1 = a,
which is only possible under the condition b(a−1) ≤ c (t(a−1, 0) ≤ t(0, 1)). If x2 = 0, then y2 = a,
which occurs only if c(a − 1) ≤ b (t(0, a − 1) ≤ t(1, 0)). These cases are of no interest from the
viewpoint of finding the Frobenius number, because in the first case g(a, b, c) = g(a, b) = ab−a− b,
while in the second g(a, b, c) = g(a, c) = ac − a − c.

In order that Lemma 1 remain valid in the degenerate cases as well, one should assume that
the point D for a rectangular diagram is defined by the equality

−−→
OD =

−→
AF − −−→

BG. Then the
characteristic property of the vector

−−→
OD follows from the explicit form of the vectors

−→
AF and

−−→
BG.

Lemma 2. Let C = (xC , yC) and E = (xE , yE). Then

f(a, b, c) = max{t(xC , yC), t(xE , yE)}.

Proof (see [14, 16, 34]). For integer numbers n, 0 ≤ n ≤ a−1, define a function t(n) as the time
taken to reach the vertex n: t(n(x, y)) = t(x, y) (K(x, y) ∈ L). The diameter of the double-loop
network can be expressed in terms of the coordinates of the points C and E:

D = max
0≤n≤a−1

t(n) = max
K(x,y)∈L

t(x, y) = max
{
t(xC − 1, yC − 1), t(xE − 1, yE − 1)

}
.
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The number m ≡ n (mod a) (0 ≤ n < a) is representable as m = bx + cy + az (x, y, z ≥ 0) if and
only if m ≥ t(n). Therefore,

g(a, b, c) = max
0≤n≤a−1

t(n) − a = D − a = max{t(xC , yC), t(xE , yE)} − a − b − c,

which is equivalent to the assertion of the lemma. �
Remark 2. Lemma 2 remains valid even under the weaker initial assumption that (a, b, c) = 1.

For (d, a) = 1, the two oriented graphs on a vertices with edges of the form j → j + b (mod a)
and j → j + c (mod a) (in the first graph) and j → j + db (mod a) and j → j + dc (mod a) (in
the second graph) are isomorphic. If we compare the diameters of the corresponding double-loop
networks and apply Lemma 2, then we obtain the Johnson formula (2): f(a, db, dc) = df(a, b, c).

3. RØDSETH’S FORMULA

Let a, b, and c be positive integers, (a, b) = (a, c) = (b, c) = 1, and l be a solution to the
congruence bl ≡ c (mod a) such that 1 ≤ l ≤ a. Rødseth’s formula for f(a, b, c) is based on the
expansion of the number a/l in a reduced regular continued fraction

a

l
= a1 −

1

a2 −
1

. . . −
1

am

(a1, . . . , am ≥ 2).

Define sequences {sj} and {qj} (0 ≤ j ≤ m + 1) by the conditions

sm+1 = 0, sm = 1, q0 = 0, q1 = 1,

sj−1 = ajsj − sj+1, qj+1 = ajqj − qj−1 (1 ≤ j ≤ m).

Then (see [32]) s0 = qm+1 = a, s1 = l, qm = l−1 (mod a), the sequence {sj} monotonically
decreases, the sequence {qj} monotonically increases, and

0 =
sm+1

qm+1
<

sm

qm
< . . . <

s1

q1
<

s0

q0
= ∞.

Hence, there is a unique number v such that sv+1/qv+1 ≤ c/b < sv/qv. Rødseth proved that the
coordinates of the points C and E, which define the sides of the diagram L (see Fig. 3), have the
form (sv − sv+1, qv+1) and (sv, qv+1 − qv). Combined with Lemma 2, this allows one to find the
Frobenius number f(a, b, c).

Theorem 1 (Rødseth, 1978). The following formula is valid :

f(a, b, c) = bsv + cqv+1 − min{bsv+1, cqv}.

The sequences {sj} and {qj} (see [7]) have the following geometric interpretation. Consider the
convex hulls of nonzero points of the lattice Λ that lie in quadrants I and II. The boundaries of
these hulls will be called sails and denoted by Π+ and Π−, respectively. The points Pn = (qn, sn)
(0 ≤ n ≤ m + 1) are the points of Λ that lie on Π−. For any n (1 ≤ n ≤ m + 1), the vectors
en = (qn, sn) and en−1 = (qn−1, sn−1) form a basis of Λ. The family of vertices of the sails
Π− and Π+ is described by sequences that are similar to {sj} and {qj} but are constructed by
expanding a/l in a classical continued fraction. The vectors connecting the origin with the vertices
of Π+ make up Π−, and vice versa. In particular, the points en − en−1 = (qn − qn−1, sn − sn−1) are
vertices of the sail Π+.

Figure 4 presents an example for a = 17, b = 9, and c = 5 (l = 10).
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Fig. 4.

4. PROOF OF RØDSETH’S FORMULA

Lemma 3. Suppose that the point of intersection of the vector (−c, b) with the sail Π− lies in
the half-open interval (Pv , Pv+1] (0 ≤ v ≤ m). Then the vectors

−−→
OD,

−→
AF, and

−−→
BG, which determine

the form of the L-shaped diagram, are given by
−−→
OD =

−−−−→
PvPv+1,

−→
AF =

−−→
PvO, and

−−→
BG =

−−−−→
Pv+1O; i.e.,

−−→
OD = (sv − sv+1, qv+1 − qv),

−→
AF = (sv,−qv),

−−→
BG = (sv+1,−qv+1).

Proof. Among the points of the lattice Λ that lie strictly inside the first quadrant, the point
D(x0, y0) is characterized by the fact that the linear form t(x, y) = bx+ cy attains its least possible
value at the point D. (If the least value is attained at several points simultaneously, then, according
to the rule, the point D is chosen so that its ordinate is as small as possible.) The point D must lie
on the sail Π+; hence, the equality

−−→
OD =

−−−−→
PjPj+1 holds for some j (0 ≤ j ≤ m). The minimality

of the form t(x, y) is equivalent to choosing, among all vectors of the form
−−−−→
PjPj+1, a vector with

the longest projection to the vector (b, c). This is the vector
−−−−→
PvPv+1, because, when moving from

bottom to top along the sail Π+, we arrive at the point D along a vector that is below (−c, b) (in
Fig. 4, this is the vector

−−→
OPv), and leave this point along a vector that is now not below (−c, b) (in

Fig. 4, this is the vector
−−−−→
OPv+2).

The condition t(0, y1) < t(x1, 0) can be rewritten as y1/x1 < b/c. By Lemma 1, to prove the
equality −−→

AF =
−−→
OPv, one should verify the following assertion: all points of the lattice Λ that are

different from Pv and lie above the axis Ox and strictly below the ray (−c, b) lie to the left of Pv .
For the points below the ray OPv, this assertion is obvious, whereas for the points inside the angle
PvOPv+1, it follows from the fact that these points can be represented as x

−−→
OPv + y

−−−−→
OPv+1, where

y ≥ 0 and x ≥ 1 (the latter inequality follows from the fact that the points lie strictly below the
vector (−c, b) and, hence, strictly below the vector

−−−−→
OPv+1).

Similarly, to prove the equality −−−→
BG =

−−−−→
OPv+1, one should verify the following assertion: all

points of the lattice Λ that are different from Pv+1 and lie to the right of the axis Oy and not
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below the ray (−c, b) lie above Pv+1. For the points to the right of the ray OPv+1, this is obvious,
whereas for the points inside the angle PvOPv+1, the assertion follows by representing these points
as x

−−→
OPv +y

−−−−→
OPv+1, where x ≥ 0 and y ≥ 1 (the vector (−c, b) is strictly above the vector

−−→
OPv). �

Proof of Theorem 1. By Lemma 3, the points C and E have coordinates (sv − sv+1, qv+1)
and (sv, qv+1 − qv), respectively. Substituting them into Lemma 2, we obtain the required formula
for the Frobenius numbers. �

Remark 3. The formulas in Lemma 3 allow one to describe other Diophantine properties
of the triple (a, b, c) (and relevant characteristics of the double-loop network). For example, for
(a, b, c) = 1, one can find the quantity N(a, b, c) equal to the number of positive integers m that are
not representable as m = ax+by+cz (x, y, z ≥ 0). The number N(a, b, c) (which could naturally be
called a Sylvester number, because the problem in [37] was devoted precisely to the determination
of N(a, b)) is responsible for the mean distance between the vertices of the double-loop network
(see [34] and [31, Theorem 5.3.1]). Rødseth proved that the modified Sylvester number

S(a, b, c) = N(a, b, c) +
a + b + c − 1

2
,

just as f(a, b, c), satisfies the relation (see [33, Lemma 1])

S(da, db, c) = dS(a, b, c);

moreover, for (a, b) = (a, c) = (b, c) = 1 (see [33, Theorem 2]),

2S(a, b, c) = bsv + cqv+1 − sv+1qv

(
b(sv − sv+1) + c(qv+1 − qv)

)
/a.

In addition, the least value of the form t(x, y) = bx + cy (which is responsible for the length
of the shortest cycle) attained for nonnegative nontrivial solutions of the congruence bx + cy ≡ 0
(mod a) (x, y ≥ 0) is b(sv − sv+1) + c(qv+1 − qv). Interchanging the arguments a, b, and c, one can
find the elements of the Johnson matrix, which also allows one to find the Frobenius numbers [25,
Theorem 4]. It is a more symmetric tool compared with Rødseth’s formula and is convenient to
apply in combination with the method of generating functions (see [18, 20, 21]).
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