

On the Construction of a Triangle from the Feet of Its Angle Bisectors

Alexey V. Ustinov

Abstract. We give simple examples of triangles not constructible by ruler and compass from the feet of its angle bisectors when the latter form a triangle with an angle of 60° or 120° .

Given a triangle ABC with sides a, b, c, we want to construct a triangle A'B'C'such that that segments AA', BB' and CC' are its angle bisectors, internal or external. Restricted to internal bisectors, this is Problem 138 of Wernick's list [3] (see also [2]). Yiu [4] has given a conic solution of the problem. Implicit in this is the impossibility of a ruler-and-compass construction in general, though in the case of a right angled triangle, this is indeed possible ([4, §7]). The purpose of this note is to give simple examples of A'B'C' not constructible from ABC by ruler-and-compass when the latter contains a 60° or 120° angle.

Following [4] we denote by (x : y : z) the barycentric coordinates of the incenter of triangle A'B'C' with respect to triangle ABC, when A, B, C are the feet of the internal angle bisectors, or an excenter when one of A, B, C is the foot of an internal bisector and the remaining two external. The vertices of triangle A'B'C' have coordinates (-x, y, z), (x, -y, z), (x, y, -z). These coordinates satisfy the following equations (see [4, §3]):

$$-x(c^{2}y^{2} - b^{2}z^{2}) + yz((c^{2} + a^{2} - b^{2})y - (a^{2} + b^{2} - c^{2})z) = 0,$$

$$-y(a^{2}z^{2} - c^{2}x^{2}) + xz((a^{2} + b^{2} - c^{2})z - (b^{2} + c^{2} - a^{2})x) = 0,$$
 (1)

$$-z(b^{2}x^{2} - a^{2}y^{2}) + xy((b^{2} + c^{2} - a^{2})x - (c^{2} + a^{2} - b^{2})y) = 0.$$

These three equations being dependent, it is enough to consider the last two. Elimination of z from these leads to a quartic equation in x and y. This fact already suggests the impossibility of a ruler-and-compass construction. However, this can be made precise if we put $c^2 = a^2 - ab + b^2$. In this case, angle C is 60° and we obtain, by writing $bx = t \cdot ay$, the following cubic equation in t:

Publication Date: November 2, 2009. Communicating Editor: Paul Yiu.

The research of the author was supported by Dynasty Foundation.

The author is grateful to V. Dubrovsky for the references [2, 3].

$$3(a-b)bt^{3} - (a^{2} - 4ab + b^{2})t^{2} + (a^{2} - 4ab + b^{2})t + 3a(a-b) = 0$$

With a = 8, b = 7 (so that $c = \sqrt{57}$ and angle C is 60°), this reduces to $7t^3 + 37t^2 - 37t + 8 = 0$,

which is easily seen not to have rational roots. The roots of the cubic equation are not constructible by ruler and compass (see [1, Chapter 3]). Explicit solutions can be realized by taking A = (7,0), $B = (4, 4\sqrt{3})$, C = (0,0), with resulting A'B'C' and the corresponding incenter (or excenter) exhibited in the table below.

t	$0.5492\cdots$	$0.3370\cdots$	$-6.1721\cdots$
A'	(-0.3891, 6.8375)	(1.3112, 6.9711)	(5.8348, 0.7573)
B'	(1.4670, -25.7766)	(5.5301, 29.3999)	(7.6694, 0.9954)
C'	(8.5071, 7.0213)	(6.6557, 6.8857)	(6.3481, -0.9692)
Ι	(3.6999, 3.0537)	(3.7956, 3.9267)	(3.7956, 3.9267)
	incenter	B' – excenter	A' – excenter

On the other hand, if $c^2 = a^2 + ab + b^2$, the eliminant of z from (1) is also a cubic (in x and y) which, with the substitution $bx = t \cdot ay$, reduces to

 $3(a+b)bt^{3} - (a^{2} + 4ab + b^{2})t^{2} - (a^{2} - 4ab + b^{2})t + 3a(a+b) = 0.$

With a = 2, b = 1 (so that $c = \sqrt{7}$ and angle C is 120°), this reduces to

 $9t^3 - 13t^2 - 13t + 18 = 0,$

with three irrational roots. Explicit solutions can be realized by taking A = (1,0), $B = (-1,\sqrt{3})$, C = (0,0), with resulting A'B'C' and the corresponding excenter exhibited in the table below.

t	$1.0943\cdots$	$1.5382\cdots$	$-1.1881\cdots$
A'	(0.6876, -0.3735)	(5.2374, -2.2253)	(0.0436, 0.0549)
B'	(-1.4112, 0.7665)	(1.2080, -0.5132)	(-0.0555, -0.0699)
C'	(0.1791, 0.2609)	(0.7473, 0.6234)	(0.1143, -0.0586)
Ι	(0.1791, 0.2609)	(0.3863, 0.3222)	(-0.1261, 0.0646)
	C' – excenter	A' – excenter	C' – excenter

References

- [1] R. Courant and H. Robbins, What is mathematics? Oxford University Press, 1979.
- [2] L. F. Meyers, Update on William Wernick's "Triangle constructions with three located points", *Math. Mag.*, 69 (1996) 46–49.
- [3] W. Wernick, Triangle constructions with three located points, Math. Mag., 55 (1982) 227-230.
- [4] P. Yiu, Conic solution of a triangle from the feet of its angle bisectors, *Journal for Geometry and Graphics*, 12 (2008) 171–182.

Alexey V. Ustinov: Institute of Applied Mathematics, Dzerzhinskogo 54, Khabarovsk 680000, Russia

E-mail address: ustinov.alexey@gmail.com

280