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ABSTRACT 
 
Aims: Rivers often are twisting (meandering). There is no a simple physical model, which would 
explain the cause of formation of meanders and would describe their main (general) features, 
abstracting from the peculiarities of the real rivers. The resent work is devoted to creation and 
discussion of such model. 
Study Design: We describe general features of river meandering in the framework of a simple 
physical model based on the law of constancy of the total stream velocity and action of gravity. 
Place and Duration of Study: Institute of Materials, Khabarovsk, Russia; Institute of Applied 
Mathematics, Khabarovsk, Russia; 2013-2014. 
Methodology: We consider a water stream flowing with a constant average velocity along a valley 
having slopes of constant inclination. 
Results: We have found that the stream deviations at different obstacles can play a role of the 
reason of meandering. The sinousity of a stream depends on the ratio of the slope and valley steep 
angles; and its mean value is about 1.5 in accordance with observed geography data. 
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Conclusion: General features of river meandering may be understood in the framework of a simple 
physical model based on influence of gravity and the law of constancy of the total stream velocity. 
We have found that the stream deviations at different obstacles can play a main causal role for 
meandering. The sinousity S of a stream depends on the ratio of the slope and valley steep angles 
β/α and is equal to 1.507 for β/α=1 and the deviation angle δ=90º. For other cases the value of S 
lies between 1 and 2 for δ≤90º and has a maximal limit of 2.4 for δ≤90º at δ=123.4º. 
 

 
Keywords: Meandering; sinousity; physical model. 
 

1. INTRODUCTION 
 
Rivers are not straight; their current is twisting 
(meandering). The ratio of the curved length L of 
the river to length of a straight path P is called as 
sinuosity S (S=L/P). In the nature, meandering of 
the river depends on many aspects of a 
surrounding relief, features of the breeds forming 
its valley and many others. As a result, observed 
sinuosity of the rivers varies in the wide range of 
sizes: from hardly exceeding unit to several 
ones. Seeking to explain the nature of 
meandering the majority of researchers tries to 
take into account thin hydrodynamic features of a 
current (turbulence, secondary flows, etc.) 
[1,2,3,4], interaction of the river with banks 
(washout, material transfer, etc.) [5], and 
stochastic deviations of the stream from a 
straight way [6,7]; the hypothesis of an important 
role of casual obstacles was stated by Popov [8]. 
The most researchers reported that the average 
sinuosity is equal to 1.5-1.6 and rarely 
overcomes 2.0 [9,10,11,12], but stochastic 
calculations predict a value of π [6]. It is known 
that instability of a straight moving is a 
fundamental feature of a river flow [13,14,15]. 
However, even now there is no a simple physical 
model, which would explain the cause of 
formation of meanders and would describe their 
main (general) features, abstracting from the 
peculiarities of the real rivers. The recent work is 
devoted to creation and discussion of such 
model.  
 
2. MODEL 
 
River valleys can have different profile. We will 
consider here only the simplest of them: V-like 
one, which has slopes of a constant inclination. 
This case allows obtaining the main formulas 
analytically. Valleys that are more complicated 
may be considered by the same way numerically. 
 
Fig. 1 demonstrates the common details of a V-
like river valley. The straight direction of its 
bottom is characterized with a momentum A, 

which has the angle in relation to the X axis. 
The valley slope forms the angle between it 
and the Y axis and may be characterized by a B 
momentum which is orthogonal to A. Firstly the 
valley has no channel, thus water can flow 
straightly in the A direction under the action of 
gravity. If the width and the depth of the stream 
are stable its velocity V0 is constant and caused 
by equilibrium of the gravity force and the forces 
of friction.  
 
Let us consider the movement of water along a 
valley with the perfect plate slopes. This 
movement is straight in the absence of obstacles 
(Fig. 2, the 0-1 region). If the stream meets a 
hard obstacle in the point 1, it changes its 
direction and the deviation angle will be 
depending on the angle of collision and many 
other conditions. If, for example, = 90º the 
stream will rise on the slope moving at the same 
time down on a valley. Its summary movement 
(the first meander) is shown by the curve 1-2-3. 
Then the stream goes to the opposite slope and 
repeats its movement by the same way, after that 
the whole picture repeats periodically if there are 
no other obstacles. 
 
In each moment t the water situated in the point 
[a(t), b(t)] takes part in two orthogonal 
movements characterized by VA(t) and VB(t) 
velocities, which submit to the following 
condition: 
 

2
0

22 )()( VtVtV BA  .                             (1) 

 
We see that only one from the VA(t) and VB(t) 
variables may be called independent. Let VA(t) 
be an independent variable. Then we can write 
simple Newton’s equations for movement of 
water stream:  
 

sing
dt

dVA  ,   (2) 
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,      (3) 

 

where 
)(Z  is +1 or -1 and the choice is carried out in view of continuity of a stream, velocities and 

their derivatives. 
 

 
 

Fig. 1. A scheme of a perfect river valley 
 

 
 

Fig. 2. A scheme of formation of a meander loop:  = 45º and  = 90º 
 

Using (3) we can calculate the connection between VB and t: 
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where VB(0)=V0sinδ is the initial VB velocity at t=0.  
Integrating in (4) we obtain 
 

))0(()( BB VJVJt  ,                                                                       (5) 
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Inversing numerically the t(VB) dependence we receive values of VB(t) and then calculate VA(t): 
 

)()( 22
0

)( tVVZtV BA  
, VA(0)=V0cosδ.                                  (7) 

 
The expressions (5), (6) and (7) allow us to find numerically the paths down the valley A(t) and up the 
slope B(t): 
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t
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)()( ,                                    (8) 
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Because A(t) is the path down the valley, B(A) describes the shape of the stream channel. 
 

For the sinuosity S we have obtain an analytic expression (for δ=90º): 
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3. RESULTS 
 
Our equations allow us to image the shape of 
meanders and to calculate the value of sinuosity 
if we know the average water velocity V0, the 
deviation angle δ and parameters of the valley α 
and β. The picture is periodical if there is only 
one obstacle. In nature, there are many 
obstacles; however, each of them leads to the 
same problem as described above, thus we 
consider below only cases with one obstacle.   

3.1 Deviation Forward-aside: δ≤90º 
 
Using typical for plain rivers values V0=2 m/s, α 
=0.0005 radian and the well-known value g=9.81 
m/s

2
, we have plotted B(A) for δ≤90º for β=α 

(Fig. 3). 
 
We see that for small deviations (δ = 20º, 40º) 
the shape of meanders looks like sin. However, it 
is impossible to describe meanders of real rivers 
with large deviations of stream by sin functions 
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(for example, for δ = 90º), but our model 
describes them easily. 
 

In all cases VB is equal to zero and VA=V0 in the 
top point of a curve. In the case of δ=90º and 

α=β the sinuosity S= 








 


2

)12ln(
14 =1.507 

that is a little smaller than π/2=1.570...  

The value S depends on the ratio β/α and 
aspires to 2.0 with β/α→0 (Fig. 4, the left panel). 
Decreasing of δ leads to decreasing of the 
sinousity (Fig. 4, the right panel). 
 

 

 
 

Fig. 3. Three-loops meander curves B(A) for δ≤90º, α=β=0.0005 radian, V0=2 m/s 
 

 
 

Fig. 4. Dependence of sinousity: left) on the ratio β/α (δ=90º); right) on the deviation  
angle δ (β/α=1) 
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The amplitude of a meander also aspires to 
some limited value, and this value is equal to 

4sin

2
0 




g

V
 (for δ=90º and β/α=1). It must be 

marked that the case β=0º has no connection to 
meandering; it describes a river movement down 
a wide plain valley and results in creation of river 
arms (distributaries) with a straight flowing in the 
A direction after t=tmax (see Fig. 5). This case 
requires a special investigation out of the borders 
of the present work. The case of β/α>1 describes 
valleys with slopes steeper than the valley falling. 
We suppose that our simple model is not correct 
for β/α»1 (especially for β→90º), thus in Fig. 4 
we have limited by β/α=10. 

3.2 Deviation Back-aside: δ>90º 
 

The behavior of the water stream with intial 
deviations δ>90º is shown in Fig. 6. One can see 
that the sinousity increses as δ growths. 
However, there is a geometry restriction for 
meandering with large initial deviations. This 
restriction is caused by a contact of the nearest 
loops and leads to the maximal value of 
δmax=123.4º and Smax≈2.4. For comparison, Da 
Silva [4] reported δmax=126º and Smax≈8.5 for the 
sin-generated meander curves. We suppose that 
our results are more correct because they follow 
from a realistic physical model.  

 

 
 

Fig. 5. A scheme of the stream movement in the case of β=0º, δ=90º 
 

 
 

Fig. 6. The curves B(A) for δ>90º 
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4. CONCLUSION 
 
Summarizing our results we can conclude that 
general features of river meandering may be 
understood in the framework of a simple physical 
model based on influence of gravity and the law 
of constancy of the total stream velocity. We 
have found that the stream deviations at different 
obstacles can play a main causal role for 
meandering. The sinousity S of a stream 
depends on the ratio of the slope and valley 
steep angles β/α and is equal to 1.507 for β/α=1 
and the deviation angle δ=90º. For other cases 
the value of S lies between 1 and 2 for δ≤90º and 
has a maximal limit of 2.4 for δ≤90º at δ=123.4º. 
Obviously, meandering of natural rivers is also 
caused by peculiarities of the surrounding relief 
and by many other reasons; however we believe 
that our model will help to understand this 
phenomenon much better.  
 
Da Silva [4] wrote: “According to Yang, most 
theories “emphasize some special phenomena 
observed in meandering channels and neglect 
the physical reasoning which creates them”. 
From the debates of these theories, eventually 
the idea settled that if an explanation for why 
meandering initiates is be generally accepted, it 
should not fail to explain: 1 – why the wavelength 
of meanders should be M ≈ 6B, and 2 – why 
meanders occur even when there is no sediment 
transport…” (Here B is the channel width.) Da 
Silva believes that turbulence is the reason of 
meandering. However, it is only a qualitative 
reasoning. He does not offer a physical model, 
which mathematically would bring a form of 
meanders out of turbulence. He does not discuss 
any other physical models. He only specifies, 
what conditions such models have to meet. 
 
It seems to us that his conditions (1 and 2) are 
not connected physically and can have different 
nature. Our model satisfies the second condition: 
it describes a meandering without sediment 
transport. And it does it by a very simple way. 
We give simple equations with a small set of 
parameters to calculate the basic geometry of 
meanders. It seems to us that they can be very 
useful also for prediction channels and islands 
during flood of the rivers. Besides, many of 
peculiarities of real valleys can be included in the 
model to describe each special case. (For 
instance, angles α and β may be functions of 
coordinates). In the present work we 
demonstrated the common features of the model. 
Anyone can use it with other parameters and 
conditions and make his own calculations. The 

computer code is available (vzavod@mail.ru). 
We believe that our model will be useful for the 
water resources managers in the tasks of stream 
control. 
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