Far Eastern Mathematical Journal

To content of the issue


Regularity and uniqueness of the solution of the control problem for the stationary equations of magnetic hydrodynamics with mixed boundary conditions


R. V. Brizitskii

2003, issue 2, Ń. 264–275


Abstract
The control problems for the stationary equations of viscous magnetic hydrodynamics under mixed boundary conditions for the velocity and electric and magnetic fields are considered. The regularity of the Lagrange multiplier for the considered control problems is proved. The sufficient conditions of uniqueness of solutions of the control problem for the specific cost functional are established.

Keywords:
magnetic hydrodynamics, viscous fluid, control problems, cost functional, Lagrange multipliers, optimality system

Download the article (PDF-file)

References

[1] G. V. Alekseev, Teoreticheskij analiz obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj neszhimaemoj zhidkosti, Preprint ą 1 IPM DVO RAN, Dal'nauka, Vladivostok, 2002, 78 s.
[2] G. V. Alekseev, R. V. Brizickij, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj zhidkosti so smeshannymi granichnymi usloviyami”, Dal'nevost. mat. zh., 4:1 (2003), 108–126.
[3] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, Galamen, University of Toronto, 1995.
[4] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of $H(\rot ;\Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178.
[5] L. Hou, S. Ravindran, “Computations of boundary optimal control problems for an electrically conducting fluid”, J. Comp. Phys., 128 (1996), 319–330.
[6] G. V. Alekseev, “Razreshimost' stacionarnyx zadach granichnogo upravleniya dlya uravnenij teplovoj konvekcii”, Sib. mat. zhurn., 39:5 (1998), 982–998.
[7] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991.
[8] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394.
[9] A. D. Ioffe, V. M. Tixomirov, Teoriya e'kstremal'nyx zadach, Nauka, M.
[10] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Preprint ą 19 IPM DVO RAN, Dal'nauka, Vladivostok, 2000, 60 s.

To content of the issue