Transport of an incompressible fluid admixture at the registration of its(her) diffusion in the basic stream |
A. A. Burenin, E. V. Obukhova |
2003, issue 1, P. 101–107 |
Abstract |
The process of distribution of an incompressible fluid admixture on an incompressible stream is modeled. The cases stationary, non-stationary and essentially of non-stationary (hyperbolic) diffusion are considered. |
Keywords: admixture, diffusion, stream. |
Download the article (PDF-file) |
References |
[1] V. K. Andreev, O. V. Kapcov, V. V. Puxnachev, A. A. Rodionov, Primenenie teoretiko-gruppovyx metodov v gidrodinamike, Nauka, M., 1994, 319 s. [2] G. I. Marchuk, Matematicheskoe modelirovanie v probleme okruzhayushhej sredy, Nauka, M., 1982, 319 s. [3] G. V. Alekseev, Obratnye zadachi obnaruzheniya istochnikov primesi v vyazkix zhidkostyax, Preprint № 8 IPM DVO RAN, Dal'nauka, Vladivostok, 1999, 57 s. [4] D. Dzhozef, Ustojchivost' dvizheniya zhidkosti, Mir, M., 1981, 640 s. [5] G. V. Alekseev, E'. A. Adamavichus, O razreshimosti neodnorodnyx kraevyx zadach dlya stacionarnyx uravnenij massoperenosa, DMZh, 2:2 (2001), 138–153. [6] P. Vernotte, La nouvella equation de la chaleur, De la Trams de la chaleur, 1 (1961), 76–82. [7] A. V. Lykov, Primenenie metodov termodinamiki neobratimyx processov k issledovaniyam teplo-massoperenosa, IFZh, 9:3 (1965), 624–631. [8] G. I. Barenblat, G. G. Chernyj, O momentnyx sootnosheniyax na poverxnostyax razryva v dissipativnyx sredax, PPM, 27:6 (1963), 784–787. [9] D. Blend, Nelinejnaya dinamicheskaya teoriya uprugosti, Mir, M., 1972, 183 s. [10] A. A. Burenin, Ob odnoj vozmozhnosti postroeniya priblizhennyx reshenij nestacionarnyx zadach dinamiki uprugix sred pri udarnyx vozdejstviyax, Dal'nevostochnyj matemat. sbornik, 8, Dal'nauka, Vladivostok, 1999, 49–72. |