Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid |
G. V. Alekseev, R. V. Brizitskii |
2002, issue 2, P. 285–301 |
Abstract |
Boundary value problems for the stationary equations of magnetic hydrodynamics under non-standard boundary conditions for velocity and magnetic field. The global solvability of this problem is studied. The sufficient conditions of uniqueness of the solution are established. |
Keywords: |
Download the article (PDF-file) |
References |
[1] A. G. Kulikovskij, G. A. Lyubimov, Magnitnaya gidrodinamika, Fizmatgiz, M., 1962, 248 s. [2] Dzh. Sherklif, Kurs magnitnoj gidrodinamiki, Mir, M., 1967, 320 s. [3] C. Conca, F. Murat and O. Pironneau, The Stokes and Navier – Stokes equations with boundary conditions involving the pressure, Japan. J. Math., 20 (1994), 196–210. [4] G. V. Alekseev and A. B. Smishliaev, Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions, J. Math. Fluid Mech., 3:1 (2001), 18–39. [5] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Preprint № 19 IPM DVO RAN, Dal'nauka, Vladivostok, 2000, 60 s. [6] O. A. Ladyzhenskaya, V. A. Solonnikov, Reshenie nekotoryx nestacionarnyx zadach magnitnoj gidrodinamiki dlya vyazkoj neszhimaemoj zhidkosti, Matematicheskie voprosy gidrodinamiki i magnitnoj gidrodinamiki dlya vyazkoj neszhimaemoj zhidkosti, Trudy MIAN, 59, 1960, 115–173. [7] V. A.Solonnikov, O nekotoryx stacionarnyx kraevyx zadachax magnitnoj gidrodinamiki, Matematicheskie voprosy gidrodinamiki i magnitnoj gidrodinamiki dlya vyazkoj neszhimaemoj zhidkosti, Trudy matematicheskogo instituta imeni V. A. Steklova, 59, 1960, 174–187. [8] R. H. Dyer & D. E. Edmunds, A uniqueness theorem in magnetohydrodynamics, Arch. Rat. Mech. Anal., 8 (1961), 254–262. [9] G. Duvaut & J.-L. Lions, Ine?quations en thermoe?lasticite? et magne?tohydrodynamique, Arch Rat. Mech. Anal., 46 (1972), 241–279. [10] G. V. Alekseev, O razreshimosti odnorodnoj nachal'no-kraevoj zadachi dlya uravnenij magnitnoj gidrodinamiki ideal'noj zhidkosti, Dinamika sploshnoj sredy, 57, Izd-vo IG SO RAN, Novosibirsk, 1982, 3–20. [11] M. Sermange & R. Temam, Some mathematical questions related to the MHD equations, Comm Pure. Appl. Math., 36 (1983), 635–664. [12] S. V. Chizhonkov, Ob odnoj sisteme uravnenij tipa magnitnoj gidrodinamiki, Dokl. AN SSSR, 278:5 (1984), 1074–1077. [13] M. D. Gunzburger, A. J. Meir & J. S. Peterson, On the existence, uniqueness and finite element approximation of solution of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56:194 (1991), 523–563. [14] V. N. Samoxin, O stacionarnyx zadachax magnitnoj gidrodinamiki nen'yutonovskix sred, Sib. matem. zhurn., 33:4 (1992), 120–127. [15] A. J. Meir, The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions, Comp. Math. Applic., 25 (1993), 13–29. [16] A. J. Meir & P. G. Schmidt, A velocity-current formulation for stationary MHD flow, Appl. Math. Comp., 65 (1994), 95–109. [17] G. Milone, V. A. Solonnikov, On an initial boundary-value problem for equations of magnetohydrodynamics with Hall and ion-sleep effect, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steclov. (POMI), 221, 1995, 167–184. [18] G. Milone, V. A. Solonnikov, On the solvability of some initial boundary-value problems of magnetofluidmechanics with Hall and ion-sleep effects, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Mat. Natur., 6 (1995), 117–132. [19] A. J. Meir, Variational methods for stationary MHD flow under natural interface conditions, Nonlinear Analysis, 26:4 (1996), 659–689. [20] A. J. Meir, Paul G. Schmidt, Analysis and numerical approximation of a stationery MHD flow problem with nonideal boundary, SIAM J. Numer. Anal., 36:4 (2000), 1304–1332. [21] M. Wiedmer, Finite element approximation for equations of magnetohydrodynamics, Math. Comp., 69:229 (1999), 83–101. [22] G./,V. Alekseev, Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Doklady RAN, 375:3 (2000), 315–319. [23] G. V. Alekseev, E. A. Adomavichus, Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468. [24] G./,V. Alekseev, Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa, Sib. matem. zhurnal, 42:5 (2001), 971–991. [25] G. V. Alekseev, E'. A. Adomavichyus, O razreshimosti neodnorodnyx kraevyx zadach dlya stacionarnyx uravnenij massoperenosa, Dal'nevostochnyj matem. zhurnal, 2:2 (2001), 138–153. [26] G. V. Alekseev, Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa, Zh. vychisl. matem. matem. fiz., 42:3 (2002), 380–394. [27] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986. [28] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, Galamen, University of Toronto, 1995. [29] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, v. 1, Physical Origins and Classical Methods, Springer-Verlag, Berlin – Heidelberg, 1988, 720 pp. [30] M. P. Galanin, Yu. P. Popov, Kvazistacionarnye e'lektromagnitnye polya v neodnorodnyx sredax (matematicheskoe modelirovanie), Nauka, Fizmatlit, M., 1995, 300 s. [31] G. V. Alekseev, Teoreticheskij analiz obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj neszhimaemoj zhidkosti, Preprint № 1 IPM DVO RAN, Dal'nauka, Vladivostok, 2002, 60 s. |