Far Eastern Mathematical Journal

To content of the issue


Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid


G. V. Alekseev, R. V. Brizitskii

2002, issue 2, P. 285–301


Abstract
Boundary value problems for the stationary equations of magnetic hydrodynamics under non-standard boundary conditions for velocity and magnetic field. The global solvability of this problem is studied. The sufficient conditions of uniqueness of the solution are established.

Keywords:

Download the article (PDF-file)

References

[1] A. G. Kulikovskij, G. A. Lyubimov, Magnitnaya gidrodinamika, Fizmatgiz, M., 1962, 248 s.
[2] Dzh. Sherklif, Kurs magnitnoj gidrodinamiki, Mir, M., 1967, 320 s.
[3] C. Conca, F. Murat and O. Pironneau, The Stokes and Navier – Stokes equations with boundary conditions involving the pressure, Japan. J. Math., 20 (1994), 196–210.
[4] G. V. Alekseev and A. B. Smishliaev, Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions, J. Math. Fluid Mech., 3:1 (2001), 18–39.
[5] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Preprint № 19 IPM DVO RAN, Dal'nauka, Vladivostok, 2000, 60 s.
[6] O. A. Ladyzhenskaya, V. A. Solonnikov, Reshenie nekotoryx nestacionarnyx zadach magnitnoj gidrodinamiki dlya vyazkoj neszhimaemoj zhidkosti, Matematicheskie voprosy gidrodinamiki i magnitnoj gidrodinamiki dlya vyazkoj neszhimaemoj zhidkosti, Trudy MIAN, 59, 1960, 115–173.
[7] V. A.Solonnikov, O nekotoryx stacionarnyx kraevyx zadachax magnitnoj gidrodinamiki, Matematicheskie voprosy gidrodinamiki i magnitnoj gidrodinamiki dlya vyazkoj neszhimaemoj zhidkosti, Trudy matematicheskogo instituta imeni V. A. Steklova, 59, 1960, 174–187.
[8] R. H. Dyer & D. E. Edmunds, A uniqueness theorem in magnetohydrodynamics, Arch. Rat. Mech. Anal., 8 (1961), 254–262.
[9] G. Duvaut & J.-L. Lions, Ine?quations en thermoe?lasticite? et magne?tohydrodynamique, Arch Rat. Mech. Anal., 46 (1972), 241–279.
[10] G. V. Alekseev, O razreshimosti odnorodnoj nachal'no-kraevoj zadachi dlya uravnenij magnitnoj gidrodinamiki ideal'noj zhidkosti, Dinamika sploshnoj sredy, 57, Izd-vo IG SO RAN, Novosibirsk, 1982, 3–20.
[11] M. Sermange & R. Temam, Some mathematical questions related to the MHD equations, Comm Pure. Appl. Math., 36 (1983), 635–664.
[12] S. V. Chizhonkov, Ob odnoj sisteme uravnenij tipa magnitnoj gidrodinamiki, Dokl. AN SSSR, 278:5 (1984), 1074–1077.
[13] M. D. Gunzburger, A. J. Meir & J. S. Peterson, On the existence, uniqueness and finite element approximation of solution of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56:194 (1991), 523–563.
[14] V. N. Samoxin, O stacionarnyx zadachax magnitnoj gidrodinamiki nen'yutonovskix sred, Sib. matem. zhurn., 33:4 (1992), 120–127.
[15] A. J. Meir, The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions, Comp. Math. Applic., 25 (1993), 13–29.
[16] A. J. Meir & P. G. Schmidt, A velocity-current formulation for stationary MHD flow, Appl. Math. Comp., 65 (1994), 95–109.
[17] G. Milone, V. A. Solonnikov, On an initial boundary-value problem for equations of magnetohydrodynamics with Hall and ion-sleep effect, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steclov. (POMI), 221, 1995, 167–184.
[18] G. Milone, V. A. Solonnikov, On the solvability of some initial boundary-value problems of magnetofluidmechanics with Hall and ion-sleep effects, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Mat. Natur., 6 (1995), 117–132.
[19] A. J. Meir, Variational methods for stationary MHD flow under natural interface conditions, Nonlinear Analysis, 26:4 (1996), 659–689.
[20] A. J. Meir, Paul G. Schmidt, Analysis and numerical approximation of a stationery MHD flow problem with nonideal boundary, SIAM J. Numer. Anal., 36:4 (2000), 1304–1332.
[21] M. Wiedmer, Finite element approximation for equations of magnetohydrodynamics, Math. Comp., 69:229 (1999), 83–101.
[22] G./,V. Alekseev, Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Doklady RAN, 375:3 (2000), 315–319.
[23] G. V. Alekseev, E. A. Adomavichus, Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468.
[24] G./,V. Alekseev, Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa, Sib. matem. zhurnal, 42:5 (2001), 971–991.
[25] G. V. Alekseev, E'. A. Adomavichyus, O razreshimosti neodnorodnyx kraevyx zadach dlya stacionarnyx uravnenij massoperenosa, Dal'nevostochnyj matem. zhurnal, 2:2 (2001), 138–153.
[26] G. V. Alekseev, Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa, Zh. vychisl. matem. matem. fiz., 42:3 (2002), 380–394.
[27] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986.
[28] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, Galamen, University of Toronto, 1995.
[29] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, v. 1, Physical Origins and Classical Methods, Springer-Verlag, Berlin – Heidelberg, 1988, 720 pp.
[30] M. P. Galanin, Yu. P. Popov, Kvazistacionarnye e'lektromagnitnye polya v neodnorodnyx sredax (matematicheskoe modelirovanie), Nauka, Fizmatlit, M., 1995, 300 s.
[31] G. V. Alekseev, Teoreticheskij analiz obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj neszhimaemoj zhidkosti, Preprint № 1 IPM DVO RAN, Dal'nauka, Vladivostok, 2002, 60 s.

To content of the issue