Some modifications of the integro-differential indicator of nonhomogeneity for improving of the tomography images |
A. N. Rozhko |
2002, issue 2, P. 195–209 |
Abstract |
The author of the article investigated one algorithm for a solution of a tomography problem, based on calculation of indicator of inhomogeneity [1], that recovers boundaries of different includions of the domain. Different authors, used special programs [3], constructed internal structure of some domain, ingoing radiation flows and calculated outgoing radiation flows. Used this data and indicator of inhomogeneity, they solved the problem of tomography and reconstructed internal structure of the domain. It was true, that indicator performed very well, when the condition of visibility [1] was satisfied. But in that cases, when the boundaries were close to poor invisible [1], the tomographic images of the domain were not good. Used this information the author had to improve investigated indicator. Some images were improved. Some modifications are presented in this article. |
Keywords: |
Download the article (PDF-file) |
References |
[1] D. S. Anikonov, Integro-differential indicator of nonhomogeneity problem, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 17–59. [2] F. Natterer, Matematicheskie aspekty komp'yuternoj tomografii, Per. s angl., Mir, M., 1990, 288 s. [3] D. S. Anikonov, A. E. Kovtanyuk, I. V. Proxorov, Ispol'zovanie uravneniya perenosa v tomografii, Logos, M., 2000, 169–182. [4] V. G. Nazarov, Indicator of inhomogeneity for incomplete data and its application at tomography, Preprint FEB RAS. Institute for Applied Mathematics, 17, Dal'nauka, Vladivostok, 2000, 45 pp. [5] B. G. Nazarov, Tomograficheskaya nerazlichimost' granic kontakta nekotoryx materialov, DV mat. sbornik, 8, 1999, 110–120. [6] V. G. Nazarov, Chislennye e'ksperimenty v tomografii s ispol'zovaniem indikatora neodnorodnosti i mery vidimosti, Preprint № 16 DVO RAN. Institut prikladnoj matematiki, Dal'nauka, Vladivostok, 1997, 15 s. [7] V. G. Nazarov, Ob odnom sposobe povysheniya kontrastnosti tomogramm, Tezisy dokladov dal'nevostochnoj matematicheskoj shkoly-seminara imeni akademika E. V. Zolotova, 2001, 55–56. [8] A. N. Rozhko, Primenenie vejvlet-analiza dlya uluchsheniya svojstv chislennogo differencirovaniya, Tezisy matematicheskoj nauchnoj konferencii studentov i aspirantov po matematicheskomu modelirovaniyu DVGU, 2001, 94–96. |