Far Eastern Mathematical Journal

To content of the issue


Cantor property of quasi-unitary acts over completely (0-)simple semigroups


Kozhuhov I. B., Sotov A. S.

2023, issue 1, P. 27-33
DOI: https://doi.org/10.47910/FEMJ202304


Abstract
An universal algebra $A$ is called cantorian if for any algebra $B$ of the same signature, the existence of injective homomorphisms $A\to B$ and $B \to A$ implies an isomorphism of algebras $A$ and $B$. A right act $X$ over a semigroup $S$ is called quasiunitary if $X=XS$. We prove that every quasiunitary act over a completely simple semigroup and also every quasiunitary act with zero over a completely 0-simple semigroup are cantorian.

Keywords:
act over semigroup, universal algebra, finiteness condition.

Download the article (PDF-file)

References

[1] A. N. Kolmogorov, S. V. Fomin, Jelementy teorii funkcij i funkcional'nogo analiza, Nauka, M., 1976.
[2] A. S. Sotov, “Teorema Kantora – Bernshtejna dlja poligonov nad gruppami”, Materialy VI Mezhd. konf. SITONI-2019, Izd-vo DonNTU, Doneck, 2019, 120–123.
[3] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, W. de Gruyter, Berlin – N.-Y., 2000.
[4] I. B. Kozhuhov, A. V. Mihaljov, “Poligony nad polugruppami.”, Fundamental'naja i prikladnaja matematika, 23:3 (2020), 141–191.
[5] A. Klifford, G. Preston, Algebraicheskaja teorija polugrupp. T. 1, 2, Mir, M., 1987.
[6] A. Yu. Avdeyev, I. B. Kozhukhov, “Acts over completely 0-simple semigroups”, Acta Cybernetica, 14:4 (2000), 523–531.
[7] I. B. Kozhuhov, A. O. Petrikov, “Proektivnye i in#ektivnye poligony nad vpolne prostymi polugruppami”, Fundamental'naja i prikladnaja matematika, 21:1 (2016), 123–133.
[8] I. B. Kozhuhov, A. O. Petrikov, “Proektivnye i in#ektivnye poligony nad vpolne 0-prostoj polugruppoj”, Chebyshjovskij sb., 17:4 (2016), 65–78.

To content of the issue