Far Eastern Mathematical Journal

To content of the issue

On the conformal capacity of a spatial condenser with spherical plates

Prilepkina E. G.

2022, issue 1, P. 76-83
DOI: https://doi.org/10.47910/FEMJ202207

Condencers with spherical plates are considered, the radii of which depend on the parameter r. It is shown that the conformal capacity of such condencers is a multiplicatively convex function of r. As a corollary, it has been established that some special functions related to capacity have a similar property.

conformal capacity, modulii of curve families, reduced modulus, quasiregular mappings

Download the article (PDF-file)


[1] V. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel: Birkhauser, 2014.
[2] J. Hesse, “A p-extremal length and p-capacity equality”, Ark. mat., 13:1 (1975), 131–144.
[3] M. Vuorinen, “Conformal geometry and quasiregular mappings”, Lecture Notes in Mathematics, Springer-Verlag, 1988.
[4] V. N. Dubinin, “Nekotorye svoistva vnutrennego privedennogo modulia”, Sib. matem. zhurn., 35:4 (1994), 774—792.
[5] B. E. Levitskii, “Reduced p-modulus and the interior p-harmonic radius”, Dokl. Akad. Nauk SSSR, 316:4 (1991), 812–815.
[6] V. N. Dubinin, E. G. Prilepkina, “On extremal decomposition of n-space domains”, J. Math. Sci., 105:4 (2001), 2180–2189.
[7] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, “Special functions of quasiconformal theory”, Expositiones Mathematicae, 7 (1989), 97–138.
[8] E. G. Prilepkina, A. S. Afanas'eva-Grigor'eva, “O konformnoi metrike krugovogo kol'tsa v n-mernom evklidovom prostranstve”, Dal'nevost. matem. zhurn., 18:2 (2018), 233—241.
[9] R. Laugesen, “Extremal problems involving logarithmic and Green capacity”, Duke Math. J., 70:2 (1993), 445–480.
[10] S. Pouliasis, “Concavity of condenser energy under boundary variations”, J. Geom. Anal., 31:8 (2021), 7726–7740.
[11] P. R. Garabedian, M. Schiffer, “Convexity of domain functionals”, J. Anal. Math., 2 (1953), 281–368.
[12] A. S. Afanaseva-Grigoreva, E. G. Prilepkina, “On the p-harmonic radii of circular sectors”, Issues Anal., 10(28):3 (2021), 3–14.
[13] V. N. Dubinin, “Green energy and extremal decompositions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 38–44.
[14] V. N. Dubinin, E. G. Prilepkina, “Optimal Green energy points on the circles in d-space”, Journal of Mathematical Analysis and Applications, 499:2 (2021), Article 125055.

To content of the issue