On the conformal capacity of a spatial condenser with spherical plates |
Prilepkina E. G. |
2022, issue 1, P. 76-83 DOI: https://doi.org/10.47910/FEMJ202207 |
Abstract |
Condencers with spherical plates are considered, the radii of which depend on the parameter r. It is shown that the conformal capacity of such condencers is a multiplicatively convex function of r. As a corollary, it has been established that some special functions related to capacity have a similar property. |
Keywords: conformal capacity, modulii of curve families, reduced modulus, quasiregular mappings |
Download the article (PDF-file) |
References |
[1] V. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel: Birkhauser, 2014. [2] J. Hesse, “A p-extremal length and p-capacity equality”, Ark. mat., 13:1 (1975), 131–144. [3] M. Vuorinen, “Conformal geometry and quasiregular mappings”, Lecture Notes in Mathematics, Springer-Verlag, 1988. [4] V. N. Dubinin, “Nekotorye svoistva vnutrennego privedennogo modulia”, Sib. matem. zhurn., 35:4 (1994), 774—792. [5] B. E. Levitskii, “Reduced p-modulus and the interior p-harmonic radius”, Dokl. Akad. Nauk SSSR, 316:4 (1991), 812–815. [6] V. N. Dubinin, E. G. Prilepkina, “On extremal decomposition of n-space domains”, J. Math. Sci., 105:4 (2001), 2180–2189. [7] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, “Special functions of quasiconformal theory”, Expositiones Mathematicae, 7 (1989), 97–138. [8] E. G. Prilepkina, A. S. Afanas'eva-Grigor'eva, “O konformnoi metrike krugovogo kol'tsa v n-mernom evklidovom prostranstve”, Dal'nevost. matem. zhurn., 18:2 (2018), 233—241. [9] R. Laugesen, “Extremal problems involving logarithmic and Green capacity”, Duke Math. J., 70:2 (1993), 445–480. [10] S. Pouliasis, “Concavity of condenser energy under boundary variations”, J. Geom. Anal., 31:8 (2021), 7726–7740. [11] P. R. Garabedian, M. Schiffer, “Convexity of domain functionals”, J. Anal. Math., 2 (1953), 281–368. [12] A. S. Afanaseva-Grigoreva, E. G. Prilepkina, “On the p-harmonic radii of circular sectors”, Issues Anal., 10(28):3 (2021), 3–14. [13] V. N. Dubinin, “Green energy and extremal decompositions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 38–44. [14] V. N. Dubinin, E. G. Prilepkina, “Optimal Green energy points on the circles in d-space”, Journal of Mathematical Analysis and Applications, 499:2 (2021), Article 125055. |