Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form |
Beshtokova Z. V. |
2022, issue 1, P. 3-27 DOI: https://doi.org/10.47910/FEMJ202201 |
Abstract |
The article considers a non-local boundary value problem for a multidimensional parabolic equation with integral boundary conditions. To solve the problem, we obtain an a priori estimate in differential form, which implies the uniqueness and stability of the solution with respect to the right-hand side and initial data on the layer in the $L_2$-norm. For the numerical solution of a nonlocal boundary value problem, a locally one-dimensional (economical) difference scheme by A.A. Samarskii with the order of approximation $O(h^2+\tau)$, the main idea of which is to reduce the transition from layer to layer to the sequential solution of a number of one-dimensional problems in each of the coordinate directions. Using the method of energy inequalities, a priori estimates are obtained, which imply uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem in the $L_2$-norm at a rate equal to the order of approximation of the difference scheme. An algorithm for the numerical solution is constructed. |
Keywords: parabolic equation, nonlocal condition, difference schemes, locally one-dimensional scheme, a priori estimate, stability, convergence, multidimensional problem |
Download the article (PDF-file) |
References |
[1] A. M. Nakhushev, “ Uravneniia matematicheskoi biologii” , M.: Vysshaia shkola, 1995. [2] T. Carleman, “Sur la theorie des equations integrates et ses applications”, Verh. Internat. Math. Kongr., 1 (1932), 138–151. [3] J. R. Canon, “The solution of the heat equation subject to the speci?cation of energy”, Quart. Appl. Math., 21:2 (1963), 155–160. [4] L. A. Kamynin, “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviiami” , Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1006–1024. [5] A. F. Chudnovskii, “Nekotorye korrektivy v postanovke i reshenii zadach teplo- i vlagoperenosa v pochve” , Sb. trudov AFI, 23 (1969), 41–54. [6] V. A. Steklov, “Osnovnye zadachi matematicheskoi fiziki”, M.: Nauka, 1983. [7] J. Douglas, H. H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439. [8] D. W. Peaceman, H. H. Rachford, “The numerical solution of parabolic and elliptic di?erential equations”, J. Industr. Math. Soc., 3:1 (1955), 28–41. [9] N. N. Ianenko, “Metod drobnykh shagov resheniia mnogomernykh zadach matematicheskoi fiziki”, Novosibirsk: Nauka, Sib. otd-nie, 1967. [10] A. A. Samarskii, “Ob odnom ekonomichnom raznostnom metode resheniia mnogomernogo parabolicheskogo uravneniia v proizvol'noi oblasti”, Zh. vychisl. matem. i matem. fiz., 2:5 (1962), 787–811. [11] A. A. Samarskii, “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlia uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 266–298. [12] G. I. Marchuk, “Metody rasshchepleniia”, M.: Nauka, 1988. [13] E. G. D'iakonov, “Raznostnye skhemy s rasshchepliaiushchimsia operatorom dlia mnogomernykh nestatsionarnykh zadach”, Zh. vychisl. matem. i matem. fiz., 2:4 (1962), 549–568. [14] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi v teorii teploprovodnosti s nelokal'nymi kraevymi usloviiami” , Differents. ur-niia., 13:2 (1977), 294–304. [15] A. I. Kozhanov, “Ob odnoi nelokal'noi kraevoi zadache s peremennymi koeffitsientami dlia uravnenii teploprovodnosti i Allera”, Differents. ur-niia., 40:6 (2004), 763–774. [16] L. S. Pul'kina, “O razreshimosti v L2 nelokal'noi zadachi s integral'nymi usloviiami dlia giperbolicheskogo uravneniia”, Differents. ur-niia., 36:2 (2000), 279–280. [17] A. I. Kozhanov, L. S. Pul'kina, “O razreshimosti kraevykh zadach s nelokal'nym granichnym usloviem integral'nogo vida dlia mnogomernykh giperbolicheskikh uravnenii”, Differents. ur-niia., 426:9 (2006), 1166–1179. [18] O. Iu. Danilkina, “Ob odnoi nelokal'noi zadache dlia uravneniia teploprovodnosti s integral'nym usloviem”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 1:14 (2007), 5–9. [19] V. A. Vodakhova, Z. Kh. Guchaeva, “Nelokal'naia zadacha dlia nagruzhennogo uravneniia tret'ego poriadka s kratnymi kharakteristikami”, Usp. Sovrem. Estestv., 7 (2014), 90–92. [20] M. KH. Beshtokov, V. A. Vodakhova, “Nonlocal boundary value problems for a fractional order convection–diffusion equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 459–482. [21] M. KH. Beshtokov, M. Z. Khudalov, “Diference methods of the solution of local and non-local boundary value problems for loaded equation of thermal conductivity of fractional order”, Stability, Control and Diferential Games, Springer Nature, 2020. [22] A. K. Bazzaev, D. K. Gutnova, M. Kh. Shkhanukov-Lafishev, “Lokal'no-odnomernaia skhema dlia parabolicheskogo uravneniia s nelokal'nym usloviem” , Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1048-1057. [23] Z. V. Beshtokova, M. M. Lafisheva, M. Kh. Shkhanukov-Lafishev, “Lokal'no-odnomernye raznostnye skhemy dlia parabolicheskikh uravnenii v sredakh, obladaiushchikh pamiat'iu”, Zh. vychisl. matem. i matem. fiz., 58:9 (2018), 1531–1542. [24] Z. V. Beshtokova, “ Lokal'no-odnomernaia raznostnaia skhema dlia resheniia odnoi nelokal'noi kraevoi zadachi dlia parabolicheskogo uravneniia v mnogomernoi oblasti”, Differents. ur-niia., 56:3 (2020), 366–379. [25] O. A. Ladyzhenskaia, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973. [26] A. A. Samarskii, Teoriia raznostnykh skhem, Nauka, M., 1983. [27] V. B. Andreev, “O skhodimosti raznostnykh skhem, approksimiruiushchikh vtoruiu i tret'iu kraevye zadachi dlia ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 8:6 (1968), 1218-1231. [28] A. A. Samarskii, A. V. Gulin, Ustoichivost' raznostnykh skhem, Nauka, M., 1973. [29] D. K. Fadeev, V. N. Fadeeva, Vychislitel'nye metody lineinoi algebry., Fizmatgiz, M., 1960. |