A new subclass of meromorphic function with positive coefficients defined by Hurwitz-Lerch Zeta functions |
B. Venkateswarlu, P. Thirupathi Reddy, R. Madhuri Shilpa, Sujatha |
2021, issue 1, P. 26-38 DOI: https://doi.org/10.47910/FEMJ202102 |
Abstract |
In this paper, we introduce and study a new subclass of meromorphic univalent functions defined by Hurwitz-Lerch Zeta function. We obtain coefficient inequalities, extreme points, radius of starlikeness and convexity. Finally we obtain partial sums and neighborhood properties for the class $\sigma^*(\gamma, k, \lambda, b, s)$. |
Keywords: meromorphic function, extreme point, partial sums, neighborhood |
Download the article (PDF-file) |
References |
[1] H. Silverman, “Univalent functions with negative coefficients”, Proc. Amer. Math. Soc., 51, (1975), 109–116. [2] A. W. Goodman, “On uniformly convex functions”, Ann. Polon. Math., 56, (1991), 87–92. [3] A. W. Goodman, “On uniformly starlike functions”, J. Math. Anal. Appl., 155:2, (1991), 364–370. [4] F. Ronning, “Uniformly convex functions and a corresponding class of starlike functions”, Proc. Amer. Math. Soc., 118:1, (1993), 189–196. [5] F. Ronning, “Integral representations of bounded starlike functions”, Ann. Polon. Math., 60:3, (1995), 289–297. [6] O. P. Ahuja, G. Murugusundaramoorthy and N. Magesh, “Integral means for uniformly convex and starlike functions associated with generalized hypergeometric functions”, J. Inequal. Pure Appl. Math., 8:4, (2007), 1–9, Art. 118. [7] R. Bharati, R. Parvatham and A. Swaminathan, “On subclasses of uniformly convex func- tions and corresponding class of starlike functions”, Tamkang J. Math., 28:1, (1997), 17–32. [8] G. Murugusundaramoorthy and N. Magesh, “Certain subclasses of starlike functions of complex order involving generalized hypergeometric functions”, Int. J. Math. Math. Sci., 2010, 1–12, art. ID 178605. [9] S. O. Altinta, H. Irmak and H. M. Srivastava, “A family of meromorphically univalent func- tions with positive coefficients”, Panamer. Math. J., 5:1, (1995), 75–81. [10] M. K. Aouf, “On a certain class of meromorphic univalent functions with positive coeffi- cients”, Rend. Mat., 11, (1991), 209–219. [11] M. L. Mogra, T. R. Reddy and O. P. Juneja, “Meromorphic univalent functions with positive coefficients”, Bull. Austral. Math. Soc., 32:2, (1985), 161–176. [12] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001. [13] J. Choi and H. M. Srivastava, “Certain families of series associated with the Hurwitz-Lerch Zeta function”, Appl. Math. Comput., 170, (2005), 399–409. [14] C. Ferreira and J. L. Lopez, “Asymptotic expansions of the Hurwitz-Lerch Zeta function Zeta function”, J. Math. Anal. Appl., 298, (2004), 210–224. [15] M. Garg, K. Jain and H. M. Srivastava, “Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions”, Integral Transforms Spec. Funct., 17, (2006), 803–815. [16] S.-D. Lin and H. M. Srivastava, “Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations”, Appl. Math. Comput., 154, (2004), 725–733. [17] Q. M. Luo and H. M. Srivastava, “Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials”, J. Math. Anal. Appl., 308, (2005), 290–302. [18] H.M. Srivastava, M.-J. Luo, and R. K. Raina, “New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications”, Turkish J. Anal. Number Theory, 1, (2013), 26–35. [19] F. Ghanim, “A study of a certain subclass of Hurwitz-Lerch-Zeta function related to a linear operator”, Abstr. Appl. Anal., 2013, (2013), Article ID 763756, 7 pp. |