On Gauss and Kloosterman sums |
Avdeeva M.O., Gorbatuk N.V., Shulga N.A. |
2020, issue 1, P. 9–14 DOI: https://doi.org/10.47910/FEMJ202002 |
Abstract |
In this paper we calculate averages by parameters of Kloosterman sums, which include Dirichlet characters. They appear when constructing arithmetic trace formulas in the theory of automorphic forms. |
Keywords: Dirichlet characters, Gauss sums, Kloosterman sums |
Download the article (PDF-file) |
References |
[1] D. R. Heath-Brown, “The Fourth Power Moment of the Riemann Zeta Function”, Proc. London Math. Soc., 38:3, (1979), 385–422. [2] A. Selberg, “Uber die Fourierkoeffizienten elliptischen Modulformen negativer Dimension”, Neuvieme Congres Math. Scandinaves, Helsingfors, 1938, 320–322. [3] N. V. Kuznetsov, “ Gipoteza Petersona dlia parabolicheskikh form vesa nul' i gipoteza Linnika. Summy summ Kloostermana”, Matem. sb., III (153):3, (1980), 334–383. [4] R. A. Smith, “A generalization of Kuznetsov’s identity for Kloosterman sums”, C.R. Math. Rep. Acad. Sci., 11:6, (1980), 315–320. [5] A. V. Ustinov, “O chisle reshenii sravneniia xy ? l (mod q) pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii” , Algebra i analiz, 20:5, (2008), 186–216. [6] T. Estermann, “On Kloosterman’s sum”, Mathematika, 8:1, (1961), 83–86. [7] G. Devenport, Mul'tiplikativnaia teoriia chisel, Nauka, M., 1971, 200 s. |